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Example 1. Find the Continued Fraction Expansions for
√
2, π, e and the Golden

Ratio which is the positive root of φ2 − φ− 1 = 0.

Definition 1. Set of Real numbers R is a set satisfying
1.Field Axioms 2.Order Axioms 3.Completeness Axiom

Axiom 1. Field Axioms.
R is a non empty set with binary operations + and . satisfying the following properties

1. ∀a, b ∈ R; a+ b ∈ R: closed under addition

2. ∀a, b, c ∈ R; a+ (b+ c) = (a+ b) + c: addition is associative

3. ∃0 ∈ R,∀a ∈ R; a+ 0 = 0 + a = a: additive identity exists

4. ∀a ∈ R,∃ − a ∈ R; a+ (−a) = (−a) + a = 0: additive inverse exists

5. ∀a, b ∈ R; a+ b = b+ a: addition is commutative

6. ∀a, b ∈ R; a.b ∈ R: closed under multiplication

7. ∀a, b, c ∈ R; a.(b.c) = (a.b).c: multiplication is associative

8. ∃1 ∈ R,∀a ∈ R; a.1 = 1.a = a: multiplicative identity exists

9. R−{0} 6= ∅ and ∀a ∈ R−{0},∃a−1 ∈ R; a.a−1 = a−1.a = 1: multiplicative inverse
exists

10. ∀a, b ∈ R; a.b = b.a: multiplication is commutative

11. ∀a, b, c ∈ R; a.(b+ c) = (a.b) + (a.c): multiplication is distributive over addition

Definition 2.
a− b = a+ (−b): Subtraction
If b 6= 0, ab = a.b−1: Division

Definition 3.

1. We write 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4 and so on.

2. Set of Positive Integers Z+ = {1, 2, 3, · · · }

3. Set of Natural Numbers N = Z+ ∪ {0}

4. Set of Negative Integers Z− = {−a|a ∈ Z+}

5. Set of Integers Z = Z− ∪ {0} ∪ Z+

6. Set of Rational Numbers Q = {pq |p, q ∈ Z and q 6= 0}

7. Set of Irrational Numbers Qc = R−Q

8. If a, b ∈ Z we say a divides b or a is a factor of b and write a|b iff b
a ∈ Z

9. p ∈ Z+ − {1} is a Prime Number iff 1 and p are its only factors.
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Example 2. Any set of two or more elements with two binary operations satisfying
the fields axioms is called a Field. See if the following are fields

1. R with . and +

2. Z,Q,Qc with + and .

3. {0, 1, 2} with mod 3 arithmetic

4. {0, 1, 2, 3} with mod 4 arithmetic

Theorem 1.

1. There are infinitely many prime numbers.

2. Every n ∈ Z+ − {1} is a prime number or a unique product of prime numbers

3. Gaps between prime numbers can be arbitrary large.

4. {0, 1, 2, · · · , n− 1} with mod n arithmetic is a field iff n is prime.

Definition 4. Integer Powers
If a 6= 0, a0 = 1
If a 6= 0, n ∈ Z+ then an = a.an−1

If a 6= 0, n ∈ Z+ then a−n = (a−1)n

Example 3. Prove the following with a, b, c ∈ R

1. If a+ b = 0 then b = −a

2. If a+ c = b+ c then a = b

3. −(a+ b) = (−a) + (−b)

4. −(−a) = a

5. a.0 = 0

6. 0, 1,−a, a−1 are unique

7. If a 6= 0 and ab = 1 then b = a−1

8. If ac = bc and c 6= 0 then a = b

9. If ab = 0 then a = 0 or b = 0

10. −(ab) = (−a)b = a(−b)

11. (−a)(−b) = ab

12. If a 6= 0, (a−1)−1 = a

13. If a, b 6= 0, (ab)−1 = a−1b−1

14. If a 6= 0 and m,n ∈ Z then aman = am+n

15. If a, b 6= 0, n ∈ Z, (ab)n = anbn
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Axiom 2. Order Axioms
R has a Order < satisfying the following.

12. ∀a, b ∈ R;exactly one of a = b, a < b, b < a holds: Trichotomy

13. ∀a, b, c ∈ R; a < b and b < c implies a < c: Transitivity

14. ∀a, b, c ∈ R; a < b implies a+ c < b+ c: operations with addition

15. ∀a, b ∈ R; a < b and 0 < c implies ac < bc: operations with multiplication

Definition 5.
b > a is same as a < b
a ≤ b means a < b or a = b
Above follows that a 6= b is either a < b or a > b.

Definition 6. Absolute Value |a| = a if a ≥ 0 and −a if a < 0

Example 4.

1. ∀a, b ∈ R; a < b and c < 0 implies ac > bc

2. 1 > 0

3. a > 0 iff a−1 > 0

4. If a < b and c < d then a+ c < b+ d

5. If 0 < a < b and 0 < c < d then ac < bd

6. See if | defines an order in Z

7. |a| ≤ r iff −r ≤ a ≤ r

8. a2 ≥ 0

9. |ab| = |a||b|

10. |a| − |b| ≤ |a+ b| ≤ |a|+ |b|

11. ||a| − |b|| ≤ |a− b|

12. |a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2

Definition 7. Let A be a non-empty subset of R. Then

1. Upper Bound of A: u ∈ R such that ∀a ∈ A; a ≤ u

2. Bounded Above: An upper bound exists

3. Maximum(largest) element of A: maxA = u ∈ A and u is an upper bound of A

4. Lower Bound of A: ` ∈ R such that ∀a ∈ A; ` ≤ a

5. Bounded Below: A lower bound exists

6. Minimum(least) element of A: minA = ` ∈ A and ` is a lower bound of A
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7. Supremum of A: supA=least upper bound of A.
or equivalently: If u is an upper bound then supA ≤ u
or equivalently: if u < supA then u is not an upper bound of A.

8. Infimum of A: inf A=largest lower bound of A.
or equivalently: If ` is a lower bound then inf A ≥ `
or equivalently: if ` > inf A then ` is not a lower bound of A.

9. Bounded: bounded above and bounded below

Axiom 3. Completeness Axiom.

1. Every non-empty subset of R which is bounded above has a supremum.

2. Every non-empty subset of R which is bounded below has a infimum

Definition 8. Real Intervals, a < b

1. (a, b) = {x ∈ R|a < x < b}: Open interval

2. (a, b] = {x ∈ R|a < x ≤ b}: half open/closed interval

3. [a, b) = {x ∈ R|a ≤ x < b}: half open/closed interval

4. [a, b] = {x ∈ R|a ≤ x ≤ b}: Closed interval

Example 5. Assume that A,B ⊂ R are non-empty subsets.

1. Prove that sup(a, b) = b and inf(a, b) = a.

2. Show that Z is unbounded.

3. Show that for every a ∈ R there is n ∈ Z such that n > a.

4. Prove the existence of inf using the existence of sup with suitable conditions.

5. Show that ∀a ∈ A,∀b ∈ B; a < b⇒ supA ≤ supB.

6. Show that A ⊂ B ⇒ supA ≤ supB.

7. Show that A ⊂ B ⇒ inf A ≥ inf B.

8. Show that ∀ε > 0,∃a ∈ A; a+ ε > supA

9. Show that ∀ε > 0,∃a ∈ A; a− ε < inf A

10. Show that ∃a,∀ε > 0; a < ε⇒ a < ε

11. Show that if ∃a,∀ε > 0; 0 ≤ a < ε then a = 0

12. Define A+B = {a+ b|a ∈ A, b ∈ B}. Show that sup(A+B) = supA+ supB

13. Show that there is a rational number and an irrational number between any two
real numbers.

14. Show that for each a ≥ 0 there exists a unique real number x ≥ 0 such that x2 = a
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Theorem 2. Let A be a non empty subset of R which has an upper bound u.
Then ∀ε > 0,∃a ∈ A; a+ ε > u iff u = supA

Theorem 3. Let A be a non empty subset of R which has a lower bound `.
Then ∀ε > 0,∃a ∈ A; a− ε < ` iff ` = inf A

Axiom 4. Well Ordering Principle(Completeness Axiom for Z)

1. Every non-empty subset of Z which is bounded above has a maximum.

2. Every non-empty subset of Z which is bounded below has a minimum.

Theorem 4. Division Algorithm
If a, b ∈ Z with b > 0, there exists unique q, r ∈ Z with 0 ≤< r < b such that a = qb+r

Theorem 5. Euclidean Algorithm
Let a = qb+ r according to the Division Algorithm, then gcd(a, b) = gcd(b, r)

Example 6. Find gcd(63, 12) using the Euclidean Algorithm.

Example 7. Use the continued fraction expansion of
√
2 and show that Q and Qc does

not possess the Completeness Axiom Property

Definition 9.
Ordered Pair (x, y) = {{x}, {x, y}}
Cartesian Product between two sets A,B: A×B = {(x, y)|x ∈ A, y ∈ B}

Example 8.
Show that iff (a, b) = (c, d) then a = c and b = d.
Identify < with R and | with Z as relations.

Definition 10. Relation. Let A,B be non-empty.

• Then a Relation P : A→ B is a non-empty subset of A×B

• We write any of P : x 7→ y, x P
−→y, xPy,x Py to mean (x, y) ∈ P

• A is called the Domain or domP

• B is called the Co-domain or codomP

• {y|(x, y) ∈ P} is called the Range or ranP .

• {x|(x, y) ∈ P} is called the Pre-range or preranP

• P is One-many iff ∃x ∈ A, ∃y1, y2 ∈ B; (x, y1), (x, y2) ∈ P ∧ y1 6= y2

• This implies that P is not one-many iff ∀x ∈ A,∀y1, y2 ∈ B; (x, y1), (x, y2) ∈ P ⇒
y1 = y2

• P is Many-one iff ∃x1, x2 ∈ A, ∃y ∈ B; (x1, y), (x2, y) ∈ P ∧ x1 6= x2

• This implies that P is not many-one iff ∀x1, x2 ∈ A,∀y ∈ B; (x1, y), (x2, y) ∈ P ⇒
x1 = x2

• P is Many-many iff it is one-many and many-one.
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• P is One-one(Injection) iff it is not one-many and not many-one.

• P is Everywhere-defined iff domP = preranP . This is same as ∀x ∈ A∃y ∈
B; (x, y) ∈ P .

• P is Onto(Surjection) iff codomP = ranP . This is same as ∀y ∈ B∃x ∈
A; (x, y) ∈ P .

• P is a Bijection iff it is one-one and onto

• If P : A → B and Q : B → C are relations with ranP = domQ = S ,we define
the Composite relation
Q ◦ P : A → C as Q ◦ P = {(x, z)|(x, y) ∈ P ∧ (y, z) ∈ Q, y ∈ S}. Note that
dom(Q ◦ P ) = domP and ran(Q ◦ P ) = ranQ

• The Inverse relation of P : A → B is the relation P−1 : B → A defined by
P−1 = {(y, x)|(x, y) ∈ P}.

• Note that ranP = domP−1 and ranP−1 = domP so the following compositions are
allowed. P−1 ◦P = I = {(x, x)|x ∈ domP} and P ◦P−1 = I = {(y, y)|y ∈ ranP}.

• I is called the Identity relation and we can simply write P ◦ P−1 = P−1 ◦ P = I.

Definition 11. Function. Let A,B be non-empty sets.

• Then we define the relation f : A → B as a a function when f is everywhere-
defined and not one-many. This allows us to write (x, y) ∈ f as f(x) = y

• Let f : A → B is a onto function and g : B → C is also a function. Now
ranf = B = domg, so the composite relation g ◦ f : A → C is allowed and it is
also a function. Being a functions we can simply write (g ◦ f)(x) = g(f(x)) for
all x ∈ A.

• When f is a bijection, the inverse relationf−1 is also a function and a bijection.
We have (f−1 ◦ f)(x) = f−1(f(x)) = f−1(y) = x,∀x ∈ A and (f ◦ f−1)(y) =
f(f−1(y)) = f(x) = y,∀y ∈ B. If I is the identity function given by I(x) = x we
can simply write f ◦ f−1 = f−1 ◦ f = I

• When A,B subsets of R we say that f is a real valued function.

Definition 12. Let f, g : A→ B be real valued functions. We define

1. (f + g)(x) = f(x) + g(x) for all x ∈ A

2. (f − g)(x) = f(x)− g(x) for all x ∈ A

3. (fg)(x) = f(x)g(x) for all x ∈ A

4. (fg )(x) =
f(x)
g(x) for all x ∈ A if g(x) 6= 0

Definition 13. Countable set
A set A is said to be Countable iff there exists a one-one function f : A→ Z+

A set is Uncountable iff it is not countable.
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Example 9.

1. Evaluate (
√
x)2,
√
x2, sin(sin−1 x), sin−1(sinx)

2. Find the maximal domain and range of f(x) = x2 and define the inverse functions√
(·) and −

√
(·).

3. Do the above for exp, sin, cos, tan functions.

4. Let f(x) = x + 1
x. Find the range and domain. Show that the function is not

one-one. Restrict the domain and find an inverse function.

5. Let f : A → B be a bijection. Show that (f ◦ f−1)(y) = y for all y ∈ B and
(f−1 ◦ f)(x) = x for all x ∈ A.

6. Let f(x) = 1−x
1+x and g(x) = 4x(1− x) with suitable domains. Find f ◦ g and g ◦ f .

7. Let F be the set of onto functions f : A → A. Is F under the composition
operations ◦ form a Group(structure similar to R with +)?

8. Let f : A→ B and C,D ⊆ A and let f(C) = {f(x)|x ∈ C}. Show that f(C∪D) =
f(C) ∪ f(D) and f(C ∩D) ⊆ f(C) ∩ f(D)

9. Show that the composition of two one-one functions is one-one and the composition
of two onto functions is onto.

10. Show that the integers and rational numbers are countable, but irrationals are
uncountable.

11. Show that a subset of a countable set is countable and that a superset of an un-
countable set is uncountable.

Definition 14. Limit. a, L ∈ R
limx→a f(x) = L⇔ ∀ε > 0∃δ > 0∀x, 0 < |x− a| < δ ⇒ |f(x)− L| < ε

Example 10. Show that limx→2 2x+ 3 = 7, limx→2 x
2 = 4, limx→2

x−1
2x+1 =

1
5.

Example 11. Prove the following with limx→a f(x) = L ∈ R, limx→a g(x) =M ∈ R

1. limx→a f(x) + g(x) = L+M

2. limx→a f(x)− g(x) = L−M

3. limx→a f(x)g(x) = LM

4. limx→a
f(x)
g(x) =

L
M provided M 6= 0

5. limx→b f(g(x)) = L provided that limx→a f(x) = L and limx→b g(x) = a and that
g(x) 6= a for 0 < |x− b| < δ for some δ.

Definition 15. Similarly limits correspond to any of the following combinations can
be defined. Here δ, ε,N,M > 0
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x→ a : a− δ < x < a+ δ, x 6= a f(x)→ L : L− ε < f(x) < L+ ε
x→ a+ : a < x < a+ δ f(x)→ L+ : L ≤ f(x) < L+ ε
x→ a− : a− δ < x < a f(x)→ L− : L− ε < f(x) ≤ L

x→∞ : x > N f(x)→∞ : f(x) > M
x→ −∞ : x < −N f(x)→ −∞ : f(x) < −M

Theorem 6.
limx→a f(x) = L⇔ limx→a− f(x) = L ∧ limx→a+ f(x) = L
limx→a f(x) = L− ∨ limx→a f(x) = L+ ⇒ limx→a f(x) = L

Example 12. Suppose limx→a f(x) =∞, limx→a g(x) =∞.
Show that limx→a f(x) + g(x) =∞. We can agree to write ∞+∞ =∞. In the same
way justify the following notation with b ∈ R

1. ∞+ b =∞

2. b∞ =∞ if b > 0

3. b∞ = −∞ if b < 0

4. ∞∞ =∞

5. a
∞ = 0

6. Show that you can’t have a consistent notation for ∞−∞, 0∞, ∞∞ ,
0
0. Hence these

are called indeterminate forms(together with 00,∞0, 1∞).

Theorem 7. Well-known limits
1. limx→a

xn−an
x−a = nan−1

2. limx→0
sinx
x = 1

3. limx→∞
(
1 + a

x

)x
= ea

Definition 16. Monotonic Functions
f is Increasing on A ⊂ R iff ∀x1, x2 ∈ A, x2 > x1 ⇒ f(x2) ≥ f(x1)
f is Decreasing on A ⊂ R iff ∀x1, x2 ∈ A, x2 > x1 ⇒ f(x2) ≤ f(x1)
f is Increasing at a iff ∃δ > 0∀x, (−δ < x− a⇒ f(x) ≤ f(a)) ∧ (x− a < δ ⇒ f(a) ≤
f(x))
f is Decreasing at a iff ∃δ > 0∀x, (−δ < x− a⇒ f(x) ≥ f(a))∧ (x− a < δ ⇒ f(a) ≥
f(x))
Strict means no =
Monotonic is either increasing or decreasing.

Theorem 8. Monotone Convergence Theorem(for real valued functions)
Suppose f is bounded above and increasing on R. Then limx→∞ f(x) = sup{f(x)}.
Suppose f is bounded below and decreasing on R. Then limx→∞ f(x) = inf{f(x)}.

Theorem 9. Sandwich/Squeeze Theorem
Suppose f(x) ≤ g(x) ≤ h(x) for 0 < |x − a| < δ and limx→a f(x) = limx→a h(x) = L.
Then limx→a g(x) = L.

Example 13.
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1. See if the above two theorems can be generalized for other cases of limits.

2. Use the inequality sin θ cos θ < θ < tan θ valid for 0 < θ < π
2 to show that

limθ→0
sin θ
θ = 1

3. Show that limx→∞ sinx does not exist and deduce that limx→0+ sin
1
x does not exist.

4. given a > 0 prove that limx→a
xn−an
x−a = nan−1 for n ∈ Q

5. Let p(x) = x13 + 17x12 − 10x11 + 1. Prove that limx→∞ p(x)
1/13 − x = 17

13

6. Prove that limx→0
sin−1 x
x = 1

7. Show that limx→0 x sin
1
x exists.

8. Show that limx→0 e
1/x does not exist.

9. Let f(x) = 1 when x ∈ Q and f(x) = 0 when x ∈ R−Q. Prove that limx→0 f(x)
does not exist but limx→0 xf(x) exists.

Definition 17. Continuity
f is Continuous at a iff limx→a f(x) = f(a)
Being a limit it has two sides. f(a+) = limx→a+ f(x) and f(a−) = limx→a− f(x)
f is Right Continuous at a iff f(a+) = f(a)
and f is Left Continuous at a iff f(a−) = f(a)
Therefore f is continuous at a iff f(a−) = f(a) = f(a+)
f is continuous on A ⊂ R iff f is continuous at each a ∈ A. At the boundary of A
this means the left or right continuity as desired.
We write f ∈ C(A) to mean this where C(A) is the set of continuous functions on A.
When the set is understood from the context we simply write f ∈ C.
We can ignore the concepts of left and right continuity and talk only about continuity
if we make sure that f is continuous on a larger open interval.

Theorem 10. f is continuous at a iff
∀ε > 0∃δ > 0∀x, 0 < |x− a| < δ ⇒ |f(x)− f(a)| < ε iff
∀ε > 0∃δ > 0∀x, |x− a| < δ ⇒ |f(x)− f(a)| < ε

Example 14.

1. Define f(0) so that f(x) = x sin 1
x , x 6= 0 is continuous at 0

2. Show that sinx is a continuous function.

3. Let limx→a f(x) = L, limx→b g(x) = a and that f is continuous at a. Then show
that limx→b(f ◦ g)(x) = L

4. Suppose that f is continuous at a and f(a) > 0. Show that f(x) > 0 for all
x ∈ (a− δ, a+ δ) for some δ > 0.

Theorem 11. Intermediate Value Theorem
Suppose f is continuous on [a, b] and f(a) 6= f(b) and that u is strictly between f(a)
and f(b)(i.e f(a) < u < f(b) or f(b) < u < f(a)). Then there exists c ∈ (a, b) such
that f(c) = u.
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Proof 1. Using the Completeness axiom on the set B = {x ∈ [a, b]|f(x) < u} when
f(a) < u < f(b)

Example 15.

1. Show that there is a real root of x = e−x on [0, 1].

2. Find intervals that contains the real roots of p(x) = x13 + 17x12 − 10x11 + 1

Theorem 12. Boundedness Theorem
Suppose f is continuous on [a, b]. Then f is bounded on [a, b].

Theorem 13. Extremum Value Theorem
Suppose f is continuous on [a, b]. Then f has a maximum and a minimum on [a, b].

Proof 2. Uses the Bolzano-Weistrass Theorem(which will be discussed under sequences)

Definition 18. Differentiability
f is Differentiable at a iff limx→a

f(x)−f(a)
x−a = limh→0

f(a+h)−f(a)
h ∈ R

In that case we call this limit the Derivative of f at a and write f ′(a)
Being a limit it has two sides.
f is Right Diffentiable at a iff limx→a+

f(x)−f(a)
x−a ∈ R and in that case we write f ′+(a)

for the limit and call it the Right Derivative of f at a.
f is Left Diffentiable at a iff limx→a−

f(x)−f(a)
x−a ∈ R and in that case we write f ′−(a) for

the limit and call it the Left Derivative of f at a.
Therefore f is differentiable at a iff f ′−(a) = f ′+(a) = f ′(a) ∈ R
f is differenatiable on A ⊂ R iff f is differantiable at each a ∈ A. At the boundary of
A this means the left or right differenatiability as desired.
We write f ∈ D(A) to mean this where D(A) is the set of differentiable functions on
A.
When the set is understood from the context we simply write f ∈ D.
We can ignore the concepts of left and right differentiability and talk only about differ-
antiability if we make sure that f is differantiable on a larger open interval.
When the derivative is also continuous we write f ∈ C1 where C1 is the set of contin-
uously differentiable functions.

Theorem 14. Differantiability implies Continuity
If f is differantiable at a then f is continuous at a
If f is right differantiable at a then f is right continuous at a
If f is left differantiable at a then f is left continuous at a

Theorem 15. Let f, g be differantiable functions, then

1. (f + g)′ = f ′ + g′

2. (f − g)′ = f ′ − g′

3. (fg)′ = fg′ + f ′g

4. (fg )
′ = f ′g−fg′

g2 when g(x) 6= 0

5. (f ◦ g)′ = (f ′ ◦ g)g′
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Example 16.

1. Determine which of the functions |x|, x+ |x|, x|x| are differentiable

2. Define f(0) so that f(x) = x2 sin 1
x is continuous at 0. Also show that then f is

differeantiable at 0.

3. Let f be differentiable at a. Show that if f ′(a) > 0 then f is increasing at a and
if f ′(a) < 0 then f is decreasing at a.

4. Show that the right derivative of
√
x does not exist(not right differenatible) at 0.

5. Let f be differenatiable. Show that iff limx→∞ f
′(x) =∞ then limx→∞ f(x) =∞

6. Let f be differenatiable. Show that iff limx→∞ f
′(x) = 0 then limx→∞ f(x) = L ∈ R

7. (Darboux’s Theorem)Show that the Intermediate Value Theorem holds for f ′ even
without the derivative being continuous. i.e. Let f be differantiable on [a, b] with
f ′(a) 6= f ′(b) and u is strictly between f ′(a) and f ′(b). Then there exists c ∈ (a, b)
such that f ′(c) = u. Use the function g(x) = ux− f(x).

Definition 19.
f has a Local Maximum at a iff ∃δ > 0∀x, |x− a| < δ ⇒ f(x) ≤ f(a)
f has a Local Minimum at a iff ∃δ > 0∀x, |x− a| < δ ⇒ f(x) ≥ f(a)
Extremum is either a minimum or a maximum.
a is a Critical Point of f iff it is not differentiable at a or f ′(a) = 0.

Theorem 16. Let f be differantiable. If a is a local extremum then f ′(a) = 0.


