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Example 1. Find the Continued Fraction Expansions for /2,7, e and the Golden
Ratio which is the positive root of ¢* — ¢ —1 = 0.

Definition 1. Set of Real numbers R is a set satisfying
1.Field Axioms 2.0rder Axioms 3.Completeness Axiom

Axiom 1. Field Azioms.
R is a non empty set with binary operations + and . satisfying the following properties

1. Va,b € R;a+ b € R: closed under addition

Va,b,c e Rya+ (b+c) = (a+0b) + c: addition is associative

40 e R,Va € R;a+ 0 =0+ a = a: additive identity exists

Va e R,3—a€R;ja+ (—a) = (—a) +a=0: additive inverse exists
Va,b € R;a+ b =0+ a: addition is commutative

Va,b € R;a.b € R: closed under multiplication

Va,b,c € R;a.(b.c) = (a.b).c: multiplication is associative

d1 € R,Va € R;a.1 = 1.a = a: multiplicative identity exists

© 0 RS v e

R—{0} # 0 andVa € R—{0},3a"! € R;a.a™! = a~l.a = 1: multiplicative inverse
exists

10. Ya,b € R;a.b = b.a: multiplication 1s commutative
11. Ya,b,c € R;a.(b+ ¢) = (a.b) + (a.c): multiplication is distributive over addition

Definition 2.
a—b=a+ (=b): Subtraction
Ifb#0,% = a.b~": Division

Definition 3.
1. Wewritel1+1=2,241=3,3+1=4 and so on.
2. Set of Positive Integers Z© = {1,2,3,---}
3. Set of Natural Numbers N = Z* U {0}
4. Set of Negative Integers - = {—ala € Z"}
5. Set of Integers Z. =7~ U {0} UZ™"
6. Set of Rational Numbers Q = {§|p, qE€Z and q # 0}
7. Set of Irrational Numbers Q° =R — Q
8. If a,b € Z we say a divides b or a is a factor of b and write a|b 2ﬁ§ €z
9. peZT — {1} is a Prime Number iff 1 and p are its only factors.
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Example 2. Any set of two or more elements with two binary operations satisfying
the fields axioms is called a Field. See if the following are fields

1. R with . and +
2. 7,Q,Q° with + and .
3. {0,1,2} with mod 3 arithmetic
4. {0,1,2,3} with mod 4 arithmetic
Theorem 1.
1. There are infinitely many prime numbers.
2. Everyn € Z — {1} is a prime number or a unique product of prime numbers
3. Gaps between prime numbers can be arbitrary large.
4.4{0,1,2,--+ ;n— 1} with mod n arithmetic is a field iff n is prime.

Definition 4. Integer Powers

Ifa#0,a" =1

Ifa#0,n€Z" then a" = a.a"!
Ifa#0,neZ" thena™ = (a™t)"

Example 3. Prove the following with a,b,c € R

1. Ifa+b=0 then b= —a

2. Ifa+c=b+cthena=0»

3. —(a+b) =(—a)+ (-b)

4. —(—a)=a

5. a.0=0

6.0,1,—a,a”" are unique

7. Ifa#0 and ab =1 then b = a™!
8. If ac =bc and ¢ # 0 then a =b
9. If ab=0 thena=0 orb=0

~
S

—(ab) = (—a)b = a(-"b)

. (—a)(=b) =ab

Ifa#0,(a)1=a

Ifa,b#0,(ab) ' =a 107!

. Afa#0 and m,n € Z then a™a" = a™*"

If a,b# 0,n € Z,(ab)" = a"b"

N
AR O
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Axiom 2. Order Axioms
R has a Order < satisfying the following.

12. ¥Ya,b € R;exactly one of a =b,a < b,b < a holds: Trichotomy

13. Va,b,c € R;a < b and b < ¢ implies a < c: Transitivity

14. Va,b,c € R;a < b implies a + ¢ < b+ c: operations with addition

15. Va,b € R;a < b and 0 < ¢ implies ac < bc: operations with multiplication

Definition 5.

b>a is same as a < b
a<bmeansa<bora==>o

Above follows that a # b is either a < b or a > b.

Definition 6. Absolute Value |a| = a if a > 0 and —a if a <0
Example 4.
1. Ya,b € R;a < b and ¢ < 0 implies ac > be
2.1>0
3.a>0iffal >0
4. Ifa<bandc<dthena+c<b+d
5. If0<a<band 0 < c<d then ac < bd
6. See if | defines an order in 7
7 ol <7 iff —r <a<r
.a2>0
[ab] = [al [t
10. |a] — |b| < |a+b| < |a| + |b]

8
9

11. [la] = [b]] < 'fa = 0]
12. |a+b* + |a — b]* = 2|a|* + 2|b|?
Definition 7. Let A be a non-empty subset of R. Then
1. Upper Bound of A: u € R such that Va € A;a < u
Bounded Above: An upper bound exists
Maximum(largest) element of A: max A =u € A and u is an upper bound of A
Lower Bound of A: £ € R such that Va € A;¢ < a

Bounded Below: A lower bound exists

S S e

Minimum(least) element of A: min A =/{ € A and { is a lower bound of A
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7.

8.

9.

Supremum of A: sup A=least upper bound of A.
or equivalently: If u is an upper bound then sup A < u
or equivalently: if u < sup A then u is not an upper bound of A.

Infimum of A: inf A=largest lower bound of A.
or equivalently: If ¢ is a lower bound then inf A >/
or equivalently: if £ > inf A then £ is not a lower bound of A.

Bounded: bounded above and bounded below

Axiom 3. Completeness Azxiom.

1.
2.

FEvery non-empty subset of R which is bounded above has a supremum.

FEvery non-empty subset of R which is bounded below has a infimum

Definition 8. Real Intervals, a < b

1.
2.

3.
/.

(a,b) ={z € Rla < x < b}: Open interval

(a,b] = {z € Rla < x < b}: half open/closed interval
la,b) = {z € Rla < x < b}: half open/closed interval
[

a,b] = {z € Rla <z < b}: Closed interval

Example 5. Assume that A, B C R are non-empty subsets.

1.

~ o~~~
Lo =D

~
R

© % RN S v e

Prove that sup(a,b) = b and inf(a,b) = a.

Show that Z is unbounded.

Show that for every a € R there isn € Z such that n > a.

Prove the existence of inf using the existence of sup with suitable conditions.
Show that Va € A,Vb € B;a <b=sup A <supB.

Show that A C B = sup A <sup B.

Show that A C B = inf A > inf B.

Show that Ve > 0,da € A;a+ € >sup A

Show that Ve > 0,da € A;a — e < inf A

Show that da,Ve > 0;a < e = a < ¢

. Show that if da,Ve > 0;0 < a < € thena =10

Define A+ B ={a+blac A,be B}. Show that sup(A + B) =sup A + sup B

Show that there 1s a rational number and an irrational number between any two
real numbers.

. Show that for each a > 0 there exists a unique real number x > 0 such that 2> = a
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Theorem 2. Let A be a non empty subset of R which has an upper bound wu.
Then Ve > 0,da € A;a+¢e>u iff u=sup A

Theorem 3. Let A be a non empty subset of R which has a lower bound £.
Then Ve > 0,da € A;a—e <l iff { =inf A

Axiom 4. Well Ordering Principle(Completeness Axiom for Z)
1. Fvery non-empty subset of Z which is bounded above has a maximum.
2. Every non-empty subset of Z which is bounded below has a minimum.

Theorem 4. Division Algorithm
Ifa,b € Z with b > 0, there exists unique q,r € Z with 0 << r < b such that a = gb+7r

Theorem 5. Fuclidean Algorithm
Let a = gb + r according to the Division Algorithm, then ged(a,b) = ged(b, r)

Example 6. Find gcd(63,12) using the Euclidean Algorithm.

Example 7. Use the continued fraction expansion of /2 and show that Q and Q° does
not possess the Completeness Axiom Property

Definition 9.
Ordered Pair (z,y) = {{z},{z,y}}
Cartesian Product between two sets A, B: A x B ={(z,y)|lz € A,y € B}

Example 8.
Show that iff (a,b) = (c,d) then a = ¢ and b = d.
Identify < with R and | with Z as relations.

Definition 10. Relation. Let A, B be non-empty.
e Then a Relation P : A — B is a non-empty subset of A x B
o We write any of P: x — y,x Ly, v Py, P, to mean (z,y) € P
o A is called the Domain or domP
e B is called the Co-domain or codomP
e {y|(xz,y) € P} is called the Range or ranP.
e {x|(x,y) € P} is called the Pre-range or preranP
e P is One-many iff 3x € A, Jy1,y2 € B; (z,y1), (x,y2) € P Ay # yo

e This implies that P is not one-many iff Vo € A,YNy1,y2 € B; (x,y1), (x,42) € P =
Y1 = Y2

e P is Many-one iff Ax1, 20 € A,y € B;(x1,y), (v2,y) € P AN 11 # 29

e This implies that P is not many-one iff Vri,xo € A,Vy € B; (x1,9y), (x2,y) € P =
Tr1 — T

o P is Many-many iff it 1s one-many and many-one.
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e P is One-one(Injection) iff it is not one-many and not many-one.

e P is Fverywhere-defined iff domP = preranP. This is same as Vx € Ady €
B;(z,y) € P.

e P is Onto(Surjection) iff codomP = ranP. This is same as Yy € Bix €
A; (z,y) € P.

e P is a Bijection iff it is one-one and onto

e [fP:A— Band @ : B — C are relations with ranP = dom(@) = S ,we define
the Composite relation

QoP:A—CasQoP ={(x,2)|(x,y) € PA(y,z) € Q,y € S}. Note that
dom(Q o P) = domP and ran(Q o P) = ran@)

o The Inverse relation of P : A — B is the relation P~' : B — A defined by
P~ ={(y,2)|(z,y) € P}.

e Note that rtanP = domP~! and ranP~' = domP so the following compositions are
allowed. P~'o P =1 = {(x,z)|x € domP} and Po Pt =1 = {(y,y)|ly € ranP}.

o [ is called the Identity relation and we can simply write Po P~' =P 1o P =1.
Definition 11. Function. Let A, B be non-empty sets.

e Then we define the relation f : A — B as a a function when f is everywhere-
defined and not one-many. This allows us to write (z,y) € f as f(x) =y

o [et f : A — B is a onto function and g : B — C is also a function. Now
ranf = B = domg, so the composite relation go f : A — C is allowed and it is

also a function. Being a functions we can simply write (g o f)(x) = g(f(x)) for
all x € A.

o When f is a bijection, the inverse relationf ™! is also a function and a bijection.

We have (f~' o f)(z) = f7'(f(2) = f'(y) = ,Vx € A and (fo f)(y) =
f(f ) = f(x) =y,Vy € B. If I is the identity function given by I(x) = x we
can simply write fo f~'=flof=1

o When A, B subsets of R we say that f is a real valued function.

Definition 12. Let f,g: A — B be real valued functions. We define
1 (f+9)(z) = f(x)+g(z) forallz € A
(f —9)(z) = f(z) —g(z) forallz € A

. (f9)(x) = f(x)g(x) for allz € A

( )

(@) =18 for allw € A if g(x) # 0

Definition 13. Countable set
A set A is said to be Countable iff there exists a one-one function f: A — Z+
A set is Uncountable iff it is not countable.
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10.

11.

Example 9.

. Bvaluate (v/x)?, V22, sin(sin~! z), sin~*(sin z)

Find the mazimal domain and range of f(x) = 2% and define the inverse functions
V(1) and —/(*).

Do the above for exp, sin, cos, tan functions.

. Let f(z) = x + % Find the range and domain. Show that the function is not

one-one. Restrict the domain and find an inverse function.

Let f : A — B be a bijection. Show that (f o f~1)(y) =y for ally € B and
(fto f)(x) ==z for all z € A.

Let f(x) = % and g(x) = 42(1 — x) with suitable domains. Find fog and go f.

Let F be the set of onto functions f : A — A. Is F under the composition
operations o form a Group(structure similar to R with +)?

Let f: A— Band C,D C A and let f(C) = {f(x)|z € C}. Show that f(CUD) =
F(C)U f(D) and f(CN D) C f(C)Nf(D)

Show that the composition of two one-one functions is one-one and the composition
of two onto functions is onto.

Show that the integers and rational numbers are countable, but irrationals are
uncountable.

Show that a subset of a countable set is countable and that a superset of an un-
countable set is uncountable.

Definition 14. Limit. a, L € R
lim, ,, f(x) =L < Ve>030 >0Ve,0< |z —a|<d=|f(x)—L| <e

Example 10. Show that lim, 9 2z + 3 = 7, lim,_,» 2% = 4, lim,_,» =1

=1 _ 1
2¢+1 ~ 5°

Example 11. Prove the following with lim, ., f(z) = L € R, lim,_,,g(z) = M € R

1.

lim, ., f(x)+g(z) =L+ M
lim, . f(x) —g(z)=L—-—M
lim, ,, f(z)g(x) = LM

lim,_., % = % provided M # 0

—
—

lim, ;, f(g(z)) = L provided that lim,_,, f(z) = L and lim,_;, g(x) = a and that
g(x) #a for 0 < |z —0b| < for some é.

Definition 15. Similarly limits correspond to any of the following combinations can
be defined. Here 6,¢, N, M >0
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r—a:a—0<z<a+dr#a flr)>L:L—e<f(x)<L+e
r—atia<zr<a+d fl@) = LT L< f(r) < L+e
r—a a—d<zx<a flx) > L~ :L—e< f(x) <L
r—o0:x>N flz) > o00: f(z)>M
r— —oo:x<—N flz) = —oco: f(z) < =M

Theorem 6.
lim, ., f(z) =L < lim, ,, f(x) = L Alim, .+ f(x) = L
lim, . f(x) = L~ Vlim, ,, f(z) = LT = lim, ,, f(z) = L

Example 12. Suppose lim,_,, f(z) = oo, lim,_, g(z) =
Show that lim,_,, f(z) + g(x) = oco. We can agree to wmte 00 + 00 = 0. In the same
way justify the following notation with b € R

1.co+b=00
boo = o0 if b > 0
boo = —o0 if b < 0
0000 = 00

L=

.%.Qﬂf*?@.w

Show that you can’t have a consistent notation for oo — oo, 000, 22 Y Hence these

0
are called indeterminate forms(together with 0°, 00" 1),
Theorem 7. Well-known limaits
1. limx_m % = na
Snt —
3 lim,_ o (1 + 5) = e

n—1

Definition 16. Monotonic Functions

f is Increasing on A C R iff Vr1, 290 € A, 190 > 11 = f(22) >

f is Decreasing on A C R iff V1,20 € A, x> 11 = f(29) < f(27)

f is Increasing at a iff 30 > OV, (=6 <x—a= f(z) < f(a)) ANz —a < d = f(a) <
f(x))

f is Decreasing at a iff 30 > OVz, (=0 <z —a = f(z) > f(a) AN(z—a < d= f(a) >
f(x))

Strict means no =

Monotonic s either increasing or decreasing.

Theorem 8. Monotone Convergence Theorem(for real valued functions)
Suppose f is bounded above and increasing on R. Then lim,_,, f(x) = sup{f(x)}.
Suppose f is bounded below and decreasing on R. Then lim,_,, f(x) = inf{f(x)}.

Theorem 9. Sandwich/Squeeze Theorem
Suppose f(x) < g(z) < h(x) for 0 < |x —al < § and lim,_,, f(z) = lim,_,, h(xz) = L.
Then lim,_, g(z) = L.

Example 13.
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1. See if the above two theorems can be generalized for other cases of limits.

2. Use the inequality sinfcos® < 0 < tan6 walid for 0 < 6 < 7 to show that
limg_,o $5% = 1

3. Show that lim,_,.. sin x does not exist and deduce that lim,_,y+ Sin% does not exist.

4. given a > 0 prove that lim,_,, Z:Zﬂ =na" ! forneQ

5. Let p(x) = o83 + 1722 — 102!t + 1. Prove that lim,_, p(x)l/l?’ —x = %

6. Prove that lim,_ Sm;x =1

7. Show that lim,_ xsin% exists.

8. Show that lim,_ .o eY* does not exist.

9. Let f(z) =1 when x € Q and f(x) =0 when x € R — Q. Prove that lim,_,o f(x)

does not exist but lim, o xf(x) ezists.

Definition 17. Continuity

f is Continuous at a iff lim,_,, f(z) = f(a)

Being a limit it has two sides. f(a™) = lim, .+ f(x) and f(a™) = lim, .- f(z)

f is Right Continuous at a iff f(a™) = f(a)

and f is Left Continuous at a iff f(a™) = f(a)

Therefore f is continuous at a iff f(a™) = f(a) = f(a™)

f is continuous on A C R iff f is continuous at each a € A. At the boundary of A
this means the left or right continuity as desired.

We write f € C(A) to mean this where C(A) is the set of continuous functions on A.
When the set is understood from the context we simply write f € C.

We can ignore the concepts of left and right continuity and talk only about continuity
if we make sure that f is continuous on a larger open interval.

Theorem 10. f is continuous at a iff
Ve > 0346 > 0Vx,0 < |[x —a| < §d = |f(z) — f(a)] <€ iff
Ve > 036 > OVx, |z —a| < d=|f(z) — f(a)] <€

Example 14.
1. Define f(0) so that f(z) = xsint, x # 0 is continuous at 0
2. Show that sinx is a continuous function.

3. Let lim,_,, f(x) = L,1im, ,, g(x) = a and that f is continuous at a. Then show
that lim,_,(f o g)(x) = L

4. Suppose that f is continuous at a and f(a) > 0. Show that f(x) > 0 for all
x € (a—0,a+0) for some § > 0.

Theorem 11. Intermediate Value Theorem

Suppose f is continuous on [a,b] and f(a) # f(b) and that u is strictly between f(a)
and f(b)(i.e f(a) < u < f(b) or f(b) < u < f(a)). Then there ezists ¢ € (a,b) such
that f(c) = u.
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Proof 1. Using the Completeness axiom on the set B = {x € [a,b]|f(x) < u} when
fla) <u < f(b)

Example 15.
1. Show that there is a real root of x = e™* on [0, 1].
2. Find intervals that contains the real roots of p(z) = x'* + 1721% — 102M + 1

Theorem 12. Boundedness Theorem
Suppose f is continuous on |a,b]. Then f is bounded on [a,b].

Theorem 13. Ezxtremum Value Theorem
Suppose f is continuous on |a,b]. Then f has a maximum and a minimum on [a,b].

Proof 2. Uses the Bolzano-Weistrass Theorem(which will be discussed under sequences)

Definition 18. Differentiability
f 1is Differentiable at a iff lim,_,, f(zx):z(a) = limy,_g w eR

In that case we call this limit the Derivative of f at a and write f'(a)

Being a limit it has two sides.

f is Right Diffentiable at a iff lim,_,,+ ﬂxg:i(a) € R and in that case we write f' (a)
for the limit and call it the Right Derivative of f at a.

f is Left Diffentiable at a iff lim,_,,- W € R and in that case we write f' (a) for
the limit and call it the Left Derivative of f at a.

Therefore f is differentiable at a iff f'(a) = fi(a) = f'(a) € R

f s differenatiable on A C R iff f is differantiable at each a € A. At the boundary of
A this means the left or right differenatiability as desired.

We write f € D(A) to mean this where D(A) is the set of differentiable functions on
A.

When the set is understood from the context we simply write f € D.

We can ignore the concepts of left and right differentiability and talk only about differ-
antiability of we make sure that f is differantiable on a larger open interval.

When the derivative is also continuous we write f € C* where C' is the set of contin-

uwously differentiable functions.

Theorem 14. Differantiability implies Continuity

If f s differantiable at a then f is continuous at a

If f is right differantiable at a then f is right continuous at a
If f 1s left differantiable at a then f is left continuous at a

Theorem 15. Let f, g be differantiable functions, then
L(f+9)=f+yd

2.(f-g9)=f—-¢

8. (fg9) =rfd +fg

4. (4) = 5 when g(x) # 0
5. (
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Example 16.

1.
2.

NS S

Determine which of the functions |x|,x + |x|, x|x| are differentiable

Define f(0) so that f(z) = xz*sin= is continuous at 0. Also show that then f is
differeantiable at 0.

Let f be differentiable at a. Show that if f'(a) > 0 then f is increasing at a and
if f'(a) <O then f is decreasing at a.

Show that the right derivative of \/x does not exist(not right differenatible) at 0.
Let [ be differenatiable. Show that iff lim, . f'(x) = oo then lim, . f(x) = o0
Let f be differenatiable. Show that iff lim, .o f'(z) = 0 thenlim, o f(x) =L € R

(Darbouz’s Theorem)Show that the Intermediate Value Theorem holds for f' even
without the derivative being continuous. i.e. Let f be differantiable on [a,b] with
f'(a) # f'(b) and u is strictly between f'(a) and f'(b). Then there exists ¢ € (a,b)
such that f'(c) = u. Use the function g(x) = ux — f(x).

Definition 19.

f has a Local Maximum at a iff 30 > OVz, |z —a| < d = f(z) < f(a)
f has a Local Minimum at a iff 30 > OV, |z —a| <0 = f(z) > f

(a)

Extremum 1s either a minimum or a maximum.
a is a Critical Point of f iff it is not differentiable at a or f'(a) = 0.

Theorem 16. Let f be differantiable. If a is a local extremum then f'(a) = 0.



