Example 1. Find the Continued Fraction Expansions for $\sqrt{2}, \pi, e$ and the Golden Ratio which is the positive root of $\phi^2 - \phi - 1 = 0$.

Definition 1. Set of Real numbers \mathbb{R} is a set satisfying1. Field Axioms2. Order Axioms3. Completeness Axiom

Axiom 1. Field Axioms.

 \mathbb{R} is a non empty set with binary operations + and . satisfying the following properties

1.
$$\forall a, b \in \mathbb{R}; a + b \in \mathbb{R}:$$
 closed under addition

- 2. $\forall a, b, c \in \mathbb{R}; a + (b + c) = (a + b) + c$: addition is associative
- 3. $\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R}; a + 0 = 0 + a = a$: additive identity exists
- 4. $\forall a \in \mathbb{R}, \exists -a \in \mathbb{R}; a + (-a) = (-a) + a = 0$: additive inverse exists
- 5. $\forall a, b \in \mathbb{R}; a + b = b + a$: addition is commutative
- 6. $\forall a, b \in \mathbb{R}$; $a.b \in \mathbb{R}$: closed under multiplication
- 7. $\forall a, b, c \in \mathbb{R}; a.(b.c) = (a.b).c$: multiplication is associative
- 8. $\exists 1 \in \mathbb{R}, \forall a \in \mathbb{R}; a.1 = 1.a = a$: multiplicative identity exists
- 9. $\mathbb{R} \{0\} \neq \emptyset$ and $\forall a \in \mathbb{R} \{0\}, \exists a^{-1} \in \mathbb{R}; a.a^{-1} = a^{-1}.a = 1$: multiplicative inverse exists
- 10. $\forall a, b \in \mathbb{R}; a.b = b.a$: multiplication is commutative
- 11. $\forall a, b, c \in \mathbb{R}$; a.(b+c) = (a.b) + (a.c): multiplication is distributive over addition

Definition 2.

a-b = a + (-b): Subtraction If $b \neq 0, \frac{a}{b} = a.b^{-1}$: Division

Definition 3.

- 1. We write 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4 and so on.
- 2. Set of Positive Integers $\mathbb{Z}^+ = \{1, 2, 3, \cdots\}$
- 3. Set of Natural Numbers $\mathbb{N} = \mathbb{Z}^+ \cup \{0\}$
- 4. Set of Negative Integers $\mathbb{Z}^- = \{-a | a \in \mathbb{Z}^+\}$
- 5. Set of Integers $\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$
- 6. Set of Rational Numbers $\mathbb{Q} = \{\frac{p}{q} | p, q \in \mathbb{Z} \text{ and } q \neq 0\}$
- 7. Set of Irrational Numbers $\mathbb{Q}^c = \mathbb{R} \mathbb{Q}$
- 8. If $a, b \in \mathbb{Z}$ we say a divides b or a is a factor of b and write a|b iff $\frac{b}{a} \in \mathbb{Z}$
- 9. $p \in \mathbb{Z}^+ \{1\}$ is a Prime Number iff 1 and p are its only factors.

Example 2. Any set of two or more elements with two binary operations satisfying the fields axioms is called a Field. See if the following are fields

- 1. \mathbb{R} with . and +
- 2. $\mathbb{Z}, \mathbb{Q}, \mathbb{Q}^c$ with + and .
- 3. $\{0, 1, 2\}$ with mod 3 arithmetic
- 4. $\{0, 1, 2, 3\}$ with mod 4 arithmetic

Theorem 1.

- 1. There are infinitely many prime numbers.
- 2. Every $n \in \mathbb{Z}^+ \{1\}$ is a prime number or a unique product of prime numbers
- 3. Gaps between prime numbers can be arbitrary large.
- 4. $\{0, 1, 2, \dots, n-1\}$ with mod n arithmetic is a field iff n is prime.

Definition 4. Integer Powers If $a \neq 0, a^0 = 1$ If $a \neq 0, n \in \mathbb{Z}^+$ then $a^n = a.a^{n-1}$ If $a \neq 0, n \in \mathbb{Z}^+$ then $a^{-n} = (a^{-1})^n$

Example 3. Prove the following with $a, b, c \in \mathbb{R}$

1. If a + b = 0 then b = -a2. If a + c = b + c then a = b3. -(a + b) = (-a) + (-b)4. -(-a) = a5. a.0 = 06. $0, 1, -a, a^{-1}$ are unique 7. If $a \neq 0$ and ab = 1 then $b = a^{-1}$ 8. If ac = bc and $c \neq 0$ then a = b9. If ab = 0 then a = 0 or b = 010. -(ab) = (-a)b = a(-b)11. (-a)(-b) = ab12. If $a \neq 0, (a^{-1})^{-1} = a$ 13. If $a, b \neq 0, (ab)^{-1} = a^{-1}b^{-1}$ 14. If $a \neq 0$ and $m, n \in \mathbb{Z}$ then $a^m a^n = a^{m+n}$ 15. If $a, b \neq 0, n \in \mathbb{Z}, (ab)^n = a^n b^n$

Axiom 2. Order Axioms

 \mathbbm{R} has a Order < satisfying the following.

12. $\forall a, b \in \mathbb{R}$; exactly one of a = b, a < b, b < a holds: Trichotomy

13. $\forall a, b, c \in \mathbb{R}; a < b \text{ and } b < c \text{ implies } a < c: \text{ Transitivity}$

14. $\forall a, b, c \in \mathbb{R}; a < b \text{ implies } a + c < b + c: \text{ operations with addition}$

15. $\forall a, b \in \mathbb{R}; a < b \text{ and } 0 < c \text{ implies } ac < bc: \text{ operations with multiplication}$

Definition 5.

 $\begin{array}{l} b > a \ is \ same \ as \ a < b \\ a \leq b \ means \ a < b \ or \ a = b \\ Above \ follows \ that \ a \neq b \ is \ either \ a < b \ or \ a > b. \end{array}$

Definition 6. Absolute Value |a| = a if $a \ge 0$ and -a if a < 0

Example 4.

1. $\forall a, b \in \mathbb{R}; a < b \text{ and } c < 0 \text{ implies } ac > bc$
2. $1 > 0$
3. $a > 0$ iff $a^{-1} > 0$
4. If $a < b$ and $c < d$ then $a + c < b + d$
5. If $0 < a < b$ and $0 < c < d$ then $ac < bd$
6. See if \mid defines an order in \mathbb{Z}
7. $ a \leq r$ iff $-r \leq a \leq r$
8. $a^2 \ge 0$
9. $ ab = a b $
10. $ a - b \le a + b \le a + b $
11. $ a - b \le a - b $
12. $ a+b ^2 + a-b ^2 = 2 a ^2 + 2 b ^2$
Definition 7 Let A be a new compty subset of

Definition 7. Let A be a non-empty subset of \mathbb{R} . Then

- 1. Upper Bound of A: $u \in \mathbb{R}$ such that $\forall a \in A; a \leq u$
- 2. Bounded Above: An upper bound exists
- 3. Maximum(largest) element of A: $\max A = u \in A$ and u is an upper bound of A
- 4. Lower Bound of A: $\ell \in \mathbb{R}$ such that $\forall a \in A; \ell \leq a$
- 5. Bounded Below: A lower bound exists
- 6. Minimum(least) element of A: $\min A = \ell \in A$ and ℓ is a lower bound of A

- 7. Supremum of A: $\sup A = least$ upper bound of A. or equivalently: If u is an upper bound then $\sup A \leq u$ or equivalently: if $u < \sup A$ then u is not an upper bound of A.
- 8. Infimum of A: $\inf A = largest lower bound of A$. or equivalently: If ℓ is a lower bound then $\inf A \ge \ell$ or equivalently: if $\ell > \inf A$ then ℓ is not a lower bound of A.
- 9. Bounded: bounded above and bounded below

Axiom 3. Completeness Axiom.

- 1. Every non-empty subset of \mathbb{R} which is bounded above has a supremum.
- 2. Every non-empty subset of \mathbb{R} which is bounded below has a infimum

Definition 8. Real Intervals, a < b

1. $(a, b) = \{x \in \mathbb{R} | a < x < b\}$: Open interval

- 2. $(a, b] = \{x \in \mathbb{R} | a < x \leq b\}$: half open/closed interval
- 3. $[a,b) = \{x \in \mathbb{R} | a \leq x < b\}$: half open/closed interval
- 4. $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$: Closed interval

Example 5. Assume that $A, B \subset \mathbb{R}$ are non-empty subsets.

- 1. Prove that $\sup(a, b) = b$ and $\inf(a, b) = a$.
- 2. Show that \mathbb{Z} is unbounded.
- 3. Show that for every $a \in \mathbb{R}$ there is $n \in \mathbb{Z}$ such that n > a.
- 4. Prove the existence of inf using the existence of sup with suitable conditions.
- 5. Show that $\forall a \in A, \forall b \in B; a < b \Rightarrow \sup A \leq \sup B$.
- 6. Show that $A \subset B \Rightarrow \sup A \leq \sup B$.
- 7. Show that $A \subset B \Rightarrow \inf A \ge \inf B$.
- 8. Show that $\forall \epsilon > 0, \exists a \in A; a + \epsilon > \sup A$
- 9. Show that $\forall \epsilon > 0, \exists a \in A; a \epsilon < \inf A$
- 10. Show that $\exists a, \forall \epsilon > 0; a < \epsilon \Rightarrow a < \epsilon$
- 11. Show that if $\exists a, \forall \epsilon > 0; 0 \leq a < \epsilon$ then a = 0
- 12. Define $A + B = \{a + b | a \in A, b \in B\}$. Show that $\sup(A + B) = \sup A + \sup B$
- 13. Show that there is a rational number and an irrational number between any two real numbers.
- 14. Show that for each $a \ge 0$ there exists a unique real number $x \ge 0$ such that $x^2 = a$

Theorem 2. Let A be a non empty subset of \mathbb{R} which has an upper bound u. Then $\forall \epsilon > 0, \exists a \in A; a + \epsilon > u$ iff $u = \sup A$

Theorem 3. Let A be a non empty subset of \mathbb{R} which has a lower bound ℓ . Then $\forall \epsilon > 0, \exists a \in A; a - \epsilon < \ell \text{ iff } \ell = \inf A$

Axiom 4. Well Ordering $Principle(Completeness Axiom for \mathbb{Z})$

- 1. Every non-empty subset of \mathbb{Z} which is bounded above has a maximum.
- 2. Every non-empty subset of \mathbb{Z} which is bounded below has a minimum.

Theorem 4. Division Algorithm If $a, b \in \mathbb{Z}$ with b > 0, there exists unique $q, r \in \mathbb{Z}$ with $0 \leq < r < b$ such that a = qb + r

Theorem 5. Euclidean Algorithm Let a = qb + r according to the Division Algorithm, then gcd(a, b) = gcd(b, r)

Example 6. Find gcd(63, 12) using the Euclidean Algorithm.

Example 7. Use the continued fraction expansion of $\sqrt{2}$ and show that \mathbb{Q} and \mathbb{Q}^c does not possess the Completeness Axiom Property

Definition 9.

Ordered Pair $(x, y) = \{\{x\}, \{x, y\}\}\$ Cartesian Product between two sets $A, B: A \times B = \{(x, y) | x \in A, y \in B\}$

Example 8.

Show that iff (a, b) = (c, d) then a = c and b = d. Identify < with \mathbb{R} and | with \mathbb{Z} as relations.

Definition 10. Relation. Let A, B be non-empty.

- Then a Relation $P: A \to B$ is a non-empty subset of $A \times B$
- We write any of $P: x \mapsto y, x \xrightarrow{P} y, x P y, x P_y$ to mean $(x, y) \in P$
- A is called the Domain or $\operatorname{dom} P$
- B is called the Co-domain or codomP
- $\{y|(x,y) \in P\}$ is called the Range or ran P.
- $\{x|(x,y) \in P\}$ is called the Pre-range or preranP
- P is One-many iff $\exists x \in A, \exists y_1, y_2 \in B; (x, y_1), (x, y_2) \in P \land y_1 \neq y_2$
- This implies that P is not one-many iff $\forall x \in A, \forall y_1, y_2 \in B; (x, y_1), (x, y_2) \in P \Rightarrow y_1 = y_2$
- P is Many-one iff $\exists x_1, x_2 \in A, \exists y \in B; (x_1, y), (x_2, y) \in P \land x_1 \neq x_2$
- This implies that P is not many-one iff $\forall x_1, x_2 \in A, \forall y \in B; (x_1, y), (x_2, y) \in P \Rightarrow x_1 = x_2$
- P is Many-many iff it is one-many and many-one.

- P is One-one(Injection) iff it is not one-many and not many-one.
- P is Everywhere-defined iff dom P = preran P. This is same as $\forall x \in A \exists y \in B; (x, y) \in P$.
- P is Onto(Surjection) iff codom P = ran P. This is same as $\forall y \in B \exists x \in A; (x, y) \in P$.
- P is a Bijection iff it is one-one and onto
- If P: A → B and Q: B → C are relations with ranP = domQ = S, we define the Composite relation
 Q ∘ P: A → C as Q ∘ P = {(x, z)|(x, y) ∈ P ∧ (y, z) ∈ Q, y ∈ S}. Note that dom(Q ∘ P) = domP and ran(Q ∘ P) = ranQ
- The Inverse relation of $P : A \to B$ is the relation $P^{-1} : B \to A$ defined by $P^{-1} = \{(y, x) | (x, y) \in P\}.$
- Note that $\operatorname{ran} P = \operatorname{dom} P^{-1}$ and $\operatorname{ran} P^{-1} = \operatorname{dom} P$ so the following compositions are allowed. $P^{-1} \circ P = I = \{(x, x) | x \in \operatorname{dom} P\}$ and $P \circ P^{-1} = I = \{(y, y) | y \in \operatorname{ran} P\}$.
- I is called the Identity relation and we can simply write $P \circ P^{-1} = P^{-1} \circ P = I$.

Definition 11. Function. Let A, B be non-empty sets.

- Then we define the relation $f : A \to B$ as a a function when f is everywheredefined and not one-many. This allows us to write $(x, y) \in f$ as f(x) = y
- Let $f : A \to B$ is a onto function and $g : B \to C$ is also a function. Now $\operatorname{ran} f = B = \operatorname{dom} g$, so the composite relation $g \circ f : A \to C$ is allowed and it is also a function. Being a functions we can simply write $(g \circ f)(x) = g(f(x))$ for all $x \in A$.
- When f is a bijection, the inverse relation f⁻¹ is also a function and a bijection. We have (f⁻¹ ∘ f)(x) = f⁻¹(f(x)) = f⁻¹(y) = x, ∀x ∈ A and (f ∘ f⁻¹)(y) = f(f⁻¹(y)) = f(x) = y, ∀y ∈ B. If I is the identity function given by I(x) = x we can simply write f ∘ f⁻¹ = f⁻¹ ∘ f = I
- When A, B subsets of \mathbb{R} we say that f is a real valued function.

Definition 12. Let $f, g : A \to B$ be real valued functions. We define

1.
$$(f+g)(x) = f(x) + g(x)$$
 for all $x \in A$
2. $(f-g)(x) = f(x) - g(x)$ for all $x \in A$
3. $(fg)(x) = f(x)g(x)$ for all $x \in A$
4. $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$ for all $x \in A$ if $g(x) \neq 0$

Definition 13. Countable set

A set A is said to be Countable iff there exists a one-one function $f : A \to \mathbb{Z}^+$ A set is Uncountable iff it is not countable.

Example 9.

- 1. Evaluate $(\sqrt{x})^2, \sqrt{x^2}, \sin(\sin^{-1}x), \sin^{-1}(\sin x)$
- 2. Find the maximal domain and range of $f(x) = x^2$ and define the inverse functions $\sqrt{(\cdot)}$ and $-\sqrt{(\cdot)}$.
- 3. Do the above for exp, sin, cos, tan functions.
- 4. Let $f(x) = x + \frac{1}{x}$. Find the range and domain. Show that the function is not one-one. Restrict the domain and find an inverse function.
- 5. Let $f : A \to B$ be a bijection. Show that $(f \circ f^{-1})(y) = y$ for all $y \in B$ and $(f^{-1} \circ f)(x) = x$ for all $x \in A$.
- 6. Let $f(x) = \frac{1-x}{1+x}$ and g(x) = 4x(1-x) with suitable domains. Find $f \circ g$ and $g \circ f$.
- 7. Let F be the set of onto functions $f : A \to A$. Is F under the composition operations \circ form a Group(structure similar to \mathbb{R} with +)?
- 8. Let $f : A \to B$ and $C, D \subseteq A$ and let $f(C) = \{f(x) | x \in C\}$. Show that $f(C \cup D) = f(C) \cup f(D)$ and $f(C \cap D) \subseteq f(C) \cap f(D)$
- 9. Show that the composition of two one-one functions is one-one and the composition of two onto functions is onto.
- 10. Show that the integers and rational numbers are countable, but irrationals are uncountable.
- 11. Show that a subset of a countable set is countable and that a superset of an uncountable set is uncountable.

Definition 14. Limit. $a, L \in \mathbb{R}$ $\lim_{x \to a} f(x) = L \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon$

Example 10. Show that $\lim_{x\to 2} 2x + 3 = 7$, $\lim_{x\to 2} x^2 = 4$, $\lim_{x\to 2} \frac{x-1}{2x+1} = \frac{1}{5}$.

Example 11. Prove the following with $\lim_{x\to a} f(x) = L \in \mathbb{R}$, $\lim_{x\to a} g(x) = M \in \mathbb{R}$

- 1. $\lim_{x \to a} f(x) + g(x) = L + M$
- 2. $\lim_{x \to a} f(x) g(x) = L M$
- 3. $\lim_{x \to a} f(x)g(x) = LM$
- 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$ provided $M \neq 0$
- 5. $\lim_{x\to b} f(g(x)) = L$ provided that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to b} g(x) = a$ and that $g(x) \neq a$ for $0 < |x-b| < \delta$ for some δ .

Definition 15. Similarly limits correspond to any of the following combinations can be defined. Here $\delta, \epsilon, N, M > 0$

$$\begin{array}{ll} x \rightarrow a: a-\delta < x < a+\delta, x \neq a & f(x) \rightarrow L: L-\epsilon < f(x) < L+\epsilon \\ x \rightarrow a^+: a < x < a+\delta & f(x) \rightarrow L^+: L \leq f(x) < L+\epsilon \\ x \rightarrow a^-: a-\delta < x < a & f(x) \rightarrow L^+: L \leq f(x) < L+\epsilon \\ x \rightarrow \infty: x > N & f(x) \rightarrow L^-: L-\epsilon < f(x) \leq L \\ x \rightarrow \infty: x > N & f(x) \rightarrow \infty: f(x) > M \\ x \rightarrow -\infty: x < -N & f(x) \rightarrow -\infty: f(x) < -M \end{array}$$

Theorem 6.

 $\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = L \land \lim_{x \to a^{+}} f(x) = L$ $\lim_{x \to a} f(x) = L^{-} \lor \lim_{x \to a} f(x) = L^{+} \Rightarrow \lim_{x \to a} f(x) = L$

Example 12. Suppose $\lim_{x\to a} f(x) = \infty$, $\lim_{x\to a} g(x) = \infty$. Show that $\lim_{x\to a} f(x) + g(x) = \infty$. We can agree to write $\infty + \infty = \infty$. In the same way justify the following notation with $b \in \mathbb{R}$

- 1. $\infty + b = \infty$
- 2. $b\infty = \infty$ if b > 0
- 3. $b\infty = -\infty$ if b < 0
- 4. $\infty \infty = \infty$
- 5. $\frac{a}{\infty} = 0$
- 6. Show that you can't have a consistent notation for $\infty \infty, 0\infty, \frac{\infty}{\infty}, \frac{0}{0}$. Hence these are called indeterminate forms (together with $0^0, \infty^0, 1^\infty$).

Theorem 7. Well-known limits

1.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

2.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

3.
$$\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a$$

Definition 16. Monotonic Functions

f is Increasing on $A \subset \mathbb{R}$ iff $\forall x_1, x_2 \in A, x_2 > x_1 \Rightarrow f(x_2) \geq f(x_1)$ f is Decreasing on $A \subset \mathbb{R}$ iff $\forall x_1, x_2 \in A, x_2 > x_1 \Rightarrow f(x_2) \leq f(x_1)$ f is Increasing at a iff $\exists \delta > 0 \forall x, (-\delta < x - a \Rightarrow f(x) \leq f(a)) \land (x - a < \delta \Rightarrow f(a) \leq f(x))$ f is Decreasing at a iff $\exists \delta > 0 \forall x, (-\delta < x - a \Rightarrow f(x) \geq f(a)) \land (x - a < \delta \Rightarrow f(a) \geq f(x))$ Strict means no = Monotonic is either increasing or decreasing.

Theorem 8. Monotone Convergence Theorem(for real valued functions) Suppose f is bounded above and increasing on \mathbb{R} . Then $\lim_{x\to\infty} f(x) = \sup\{f(x)\}$. Suppose f is bounded below and decreasing on \mathbb{R} . Then $\lim_{x\to\infty} f(x) = \inf\{f(x)\}$.

Theorem 9. Sandwich/Squeeze Theorem

Suppose $f(x) \leq g(x) \leq h(x)$ for $0 < |x - a| < \delta$ and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$. Then $\lim_{x \to a} g(x) = L$.

Example 13.

- 1. See if the above two theorems can be generalized for other cases of limits.
- 2. Use the inequality $\sin\theta\cos\theta < \theta < \tan\theta$ valid for $0 < \theta < \frac{\pi}{2}$ to show that $\lim_{\theta \to 0} \frac{\sin\theta}{\theta} = 1$
- 3. Show that $\lim_{x\to\infty} \sin x$ does not exist and deduce that $\lim_{x\to 0^+} \sin \frac{1}{x}$ does not exist.
- 4. given a > 0 prove that $\lim_{x \to a} \frac{x^n a^n}{x a} = na^{n-1}$ for $n \in \mathbb{Q}$
- 5. Let $p(x) = x^{13} + 17x^{12} 10x^{11} + 1$. Prove that $\lim_{x\to\infty} p(x)^{1/13} x = \frac{17}{13}$
- 6. Prove that $\lim_{x\to 0} \frac{\sin^{-1} x}{x} = 1$
- 7. Show that $\lim_{x\to 0} x \sin \frac{1}{x}$ exists.
- 8. Show that $\lim_{x\to 0} e^{1/x}$ does not exist.
- 9. Let f(x) = 1 when $x \in \mathbb{Q}$ and f(x) = 0 when $x \in \mathbb{R} \mathbb{Q}$. Prove that $\lim_{x \to 0} f(x)$ does not exist but $\lim_{x \to 0} xf(x)$ exists.

Definition 17. Continuity

f is Continuous at a iff $\lim_{x\to a} f(x) = f(a)$ Being a limit it has two sides. $f(a^+) = \lim_{x\to a^+} f(x)$ and $f(a^-) = \lim_{x\to a^-} f(x)$ f is Right Continuous at a iff $f(a^+) = f(a)$

- and f is Left Continuous at a iff $f(a^-) = f(a)$
- Therefore f is continuous at a iff $f(a^-) = f(a) = f(a^+)$

f is continuous on $A \subset \mathbb{R}$ iff f is continuous at each $a \in A$. At the boundary of A this means the left or right continuity as desired.

We write $f \in \mathcal{C}(A)$ to mean this where $\mathcal{C}(A)$ is the set of continuous functions on A. When the set is understood from the context we simply write $f \in \mathcal{C}$.

We can ignore the concepts of left and right continuity and talk only about continuity if we make sure that f is continuous on a larger open interval.

Theorem 10. f is continuous at a iff $\forall \epsilon > 0 \exists \delta > 0 \forall x, 0 < |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$ iff $\forall \epsilon > 0 \exists \delta > 0 \forall x, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$

Example 14.

- 1. Define f(0) so that $f(x) = x \sin \frac{1}{x}, x \neq 0$ is continuous at 0
- 2. Show that $\sin x$ is a continuous function.
- 3. Let $\lim_{x\to a} f(x) = L$, $\lim_{x\to b} g(x) = a$ and that f is continuous at a. Then show that $\lim_{x\to b} (f \circ g)(x) = L$
- 4. Suppose that f is continuous at a and f(a) > 0. Show that f(x) > 0 for all $x \in (a \delta, a + \delta)$ for some $\delta > 0$.

Theorem 11. Intermediate Value Theorem

Suppose f is continuous on [a,b] and $f(a) \neq f(b)$ and that u is strictly between f(a)and $f(b)(i.e \ f(a) < u < f(b)$ or f(b) < u < f(a)). Then there exists $c \in (a,b)$ such that f(c) = u. **Proof 1.** Using the Completeness axiom on the set $B = \{x \in [a,b] | f(x) < u\}$ when f(a) < u < f(b)

Example 15.

- 1. Show that there is a real root of $x = e^{-x}$ on [0, 1].
- 2. Find intervals that contains the real roots of $p(x) = x^{13} + 17x^{12} 10x^{11} + 1$

Theorem 12. Boundedness Theorem Suppose f is continuous on [a, b]. Then f is bounded on [a, b].

Theorem 13. Extremum Value Theorem

Suppose f is continuous on [a, b]. Then f has a maximum and a minimum on [a, b].

Proof 2. Uses the Bolzano-Weistrass Theorem(which will be discussed under sequences)

Definition 18. *Differentiability*

 $f \text{ is Differentiable at a iff } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{R}$

In that case we call this limit the Derivative of f at a and write f'(a)

Being a limit it has two sides.

f is Right Differitable at a iff $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a} \in \mathbb{R}$ and in that case we write $f'_+(a)$ for the limit and call it the Right Derivative of f at a.

f is Left Differitable at a iff $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a} \in \mathbb{R}$ and in that case we write $f'_{-}(a)$ for the limit and call it the Left Derivative of f at a.

Therefore f is differentiable at a iff $f'_{-}(a) = f'_{+}(a) = f'(a) \in \mathbb{R}$

f is differentiable on $A \subset \mathbb{R}$ iff f is differentiable at each $a \in A$. At the boundary of A this means the left or right differentiability as desired.

We write $f \in \mathcal{D}(A)$ to mean this where $\mathcal{D}(A)$ is the set of differentiable functions on A.

When the set is understood from the context we simply write $f \in \mathcal{D}$.

We can ignore the concepts of left and right differentiability and talk only about differantiability if we make sure that f is differentiable on a larger open interval.

When the derivative is also continuous we write $f \in C^1$ where C^1 is the set of continuously differentiable functions.

Theorem 14. Differentiability implies Continuity

If f is differentiable at a then f is continuous at a

If f is right differentiable at a then f is right continuous at a

If f is left differentiable at a then f is left continuous at a

 $) \neq 0$

Theorem 15. Let f, g be differentiable functions, then

1.
$$(f + g)' = f' + g'$$

2. $(f - g)' = f' - g'$
3. $(fg)' = fg' + f'g$
4. $(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$ when $g(x)$
5. $(f \circ g)' = (f' \circ g)g'$

Example 16.

- 1. Determine which of the functions |x|, x + |x|, x|x| are differentiable
- 2. Define f(0) so that $f(x) = x^2 \sin \frac{1}{x}$ is continuous at 0. Also show that then f is differentiable at 0.
- 3. Let f be differentiable at a. Show that if f'(a) > 0 then f is increasing at a and if f'(a) < 0 then f is decreasing at a.
- 4. Show that the right derivative of \sqrt{x} does not exist(not right differentiable) at 0.
- 5. Let f be differentiable. Show that iff $\lim_{x\to\infty} f'(x) = \infty$ then $\lim_{x\to\infty} f(x) = \infty$
- 6. Let f be differentiable. Show that iff $\lim_{x\to\infty} f'(x) = 0$ then $\lim_{x\to\infty} f(x) = L \in \mathbb{R}$
- 7. (Darboux's Theorem)Show that the Intermediate Value Theorem holds for f' even without the derivative being continuous. i.e. Let f be differentiable on [a,b] with $f'(a) \neq f'(b)$ and u is strictly between f'(a) and f'(b). Then there exists $c \in (a,b)$ such that f'(c) = u. Use the function g(x) = ux - f(x).

Definition 19.

f has a Local Maximum at a iff $\exists \delta > 0 \forall x, |x - a| < \delta \Rightarrow f(x) \le f(a)$ f has a Local Minimum at a iff $\exists \delta > 0 \forall x, |x - a| < \delta \Rightarrow f(x) \ge f(a)$ Extremum is either a minimum or a maximum. a is a Critical Point of f iff it is not differentiable at a or f'(a) = 0.

Theorem 16. Let f be differentiable. If a is a local extremum then f'(a) = 0.