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Example 1. Find the Continued Fraction Expansions for
√

2, π, e and the Golden
Ratio which is the positive root of φ2 − φ− 1 = 0.

Definition 1. Set of Real numbers R is a set satisfying
1.Field Axioms
2.Order Axioms
3.Completeness Axiom

Axiom 1. Field Axioms.
R is a set with two or more elements and two binary operations + and . on them
satisfying the following properties

1. ∀a, b ∈ R; a+ b ∈ R: closed under addition

2. ∀a, b, c ∈ R; a+ (b+ c) = (a+ b) + c: addition is associative

3. ∃0 ∈ R,∀a ∈ R; a+ 0 = 0 + a = a: additive identity exists

4. ∀a ∈ R,∃ − a ∈ R; a+ (−a) = (−a) + a = 0: additive inverse exists

5. ∀a, b ∈ R; a+ b = b+ a: addition is commutative

6. ∀a, b ∈ R; a.b ∈ R: closed under multiplication

7. ∀a, b, c ∈ R; a.(b.c) = (a.b).c: multiplication is associative

8. ∃1 ∈ R− {0},∀a ∈ R; a.1 = 1.a = a: multiplicative identity exists

9. ∀a ∈ R− {0},∃a−1 ∈ R; a.a−1 = a−1.a = 1: multiplicative inverse exists

10. ∀a, b ∈ R; a.b = b.a: multiplication is commutative

11. ∀a, b, c ∈ R; a.(b+ c) = (a.b) + (a.c): multiplication is distributive over addition

Definition 2.
a− b = a+ (−b): Subtraction
If a 6= 0, ab = a.b−1: Division

Definition 3.

1. We write 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4 and so on.

2. Set of Positive Integers Z+ = {1, 2, 3, · · · }

3. Set of Natural Numbers N = Z+ ∪ {0}

4. Set of Negative Integers Z− = {−a|a ∈ Z+}

5. Set of Integers Z = Z− ∪ {0} ∪ Z+

6. Set of Rational Numbers Q = {pq |p, q ∈ Z and q 6= 0}

7. Set of Irrational Numbers Qc = R−Q

8. If a, b ∈ Z we say a divides b or a is a factor of b and write a|b iff b
a ∈ Z
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9. p ∈ Z+ − {1} is a Prime Number iff 1 and p are its only factors.

Example 2. Any set of two or more elements with two binary operations satisfying
the fields axioms is called a Field. See if the following are fields

1. R with . and +

2. Z,Q,Qc with + and .

3. {0, 1, 2} with mod 3 arithmetic

4. {0, 1, 2, 3} with mod 4 arithmetic

Theorem 1.

1. There are initially many prime numbers.

2. Every n ∈ Z+ − {1} is a prime number or a unique product of prime numbers

3. Gaps between prime numbers can be arbitrary large.

4. {0, 1, 2, · · · , n− 1} is a field iff n is prime.

Definition 4. Integer Powers
If a 6= 0, a0 = 1
If a 6= 0, n ∈ Z+ then an = a.an−1

If a 6= 0, n ∈ Z+ then a−n = (a−1)n

Example 3. Prove the following with a, b, c ∈ R

1. If a+ b = 0 then b = −a

2. If a+ c = b+ c then a = b

3. −(a+ b) = (−a) + (−b)

4. −(−a) = a

5. a.0 = 0

6. 0, 1,−a, a−1 are unique

7. If a 6= 0 and ab = 1 then b = a−1

8. If ac = bc and c 6= 0 then a = b

9. If ab = 0 then a = 0 or b = 0

10. −(ab) = (−a)b = a(−b)

11. (−a)(−b) = ab

12. If a 6= 0, (a−1)−1 = a

13. If a, b 6= 0, (ab)−1 = a−1b−1

14. If a 6= 0 and m,n ∈ Z then aman = am+n
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15. If a, b 6= 0, n ∈ Z, (ab)n = anbn

Axiom 2. Order Axioms
R has a Order < satisfying the following.

12. ∀a, b ∈ R;exactly one of a = b, a < b, b < a holds: Trichotomy

13. ∀a, b, c ∈ R; a < b and b < c implies a < c: Transitivity

14. ∀a, b, c ∈ R; a < b implies a+ c < b+ c: operations with addition

15. ∀a, b ∈ R; a < b and 0 < c implies ac < bc: operations with multiplication

Definition 5.
b > a is same as a < b
a ≤ b means a < b or a = b
Above follows that a 6= b is either a < b or a > b.

Definition 6. Absolute Value |a| = a if a ≥ 0 and −a if a < 0

Example 4.

1. ∀a, b ∈ R; a < b and c < 0 implies ac > bc

2. 1 > 0

3. a > 0 iff a−1 > 0

4. If a < b and c < d then a+ c < b+ d

5. If 0 < a < b and 0 < c < d then ac < bd

6. See if | defines an order in Z

7. |a| ≤ r iff −r ≤ a ≤ r

8. a2 ≥ 0

9. |ab| = |a||b|

10. |a| − |b| ≤ |a+ b| ≤ |a|+ |b|

11. ||a| − |b|| ≤ |a− b|

12. |a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2

Definition 7. Let A be a non-empty subset of R. Then

1. Upper Bound of A: u ∈ R such that ∀a ∈ A; a ≤ u

2. Bounded Above: An upper bound exists

3. Maximum(largest) element of A: maxA = u ∈ A and u is an upper bound of A

4. Lower Bound of A: ` ∈ R such that ∀a ∈ A; ` ≤ a

5. Bounded Below: A lower bound exists
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6. Minimum(least) element of A: minA = ` ∈ A and ` is a lower bound of A

7. Supremum of A: supA=least upper bound of A.

8. Infimum of A: inf A=largest lower bound of A.

9. Bounded: bounded above and bounded below

Axiom 3. Completeness Axiom.

16. Every non-empty subset of R which is bounded above has a supremum.

17. Every non-empty subset of R which is bounded below has a infimum

Definition 8. Real Intervals, a < b

1. (a, b) = {x ∈ R|a < x < b}: Open interval

2. (a, b] = {x ∈ R|a < x ≤ b}: half open/closed interval

3. [a, b) = {x ∈ R|a ≤ x < b}: half open/closed interval

4. [a, b] = {x ∈ R|a ≤ x ≤ b}: Closed interval

Example 5. Assume that A,B ⊂ R are non-empty subsets which are bounded above

1. Prove that sup(a, b) = b and inf(a, b) = a.

2. Which of the following sets have the completeness axiom property Z,Q,Qc

3. Show that Z is unbounded.

4. Show that for every a ∈ R there is n ∈ Z such that n > a.

5. Show that for given a, b ∈ R with b > a, there exists n ∈ Z such that na > b

6. Show that for a, b ∈ Z+ such that a < b, there exists unique x, y ∈ Z+ such that
b = xa+ y with 0 ≤ y < a

7. Prove the existence of inf using the existence of sup with suitable conditions.

8. Suppose we have ∀a ∈ A, ∀b ∈ B; a < b. Show that supA ≤ supB.

9. Show that ∀ε > 0,∃a ∈ A; a+ ε > supA

10. Show that ∀ε > 0,∃a ∈ A; a− ε < inf A

11. Show that if ∃a,∀ε > 0; 0 ≤ a < ε then a = 0

12. Define A+B = {a+ b|a ∈ A, b ∈ B}. Show that sup(A+B) = supA+ supB

13. Show that there is a rational number and an irrational number between any two
real numbers.

14. Show that for each a ≥ 0 there exists a unique real number x ≥ 0 such that x2 = a

Definition 9.
Ordered Pair (x, y) = {{x}, {x, y}}
Cartesian Product between two sets A,B: A×B = {(x, y)|x ∈ A, y ∈ B}
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Definition 10. Relation. Let A,B be non-empty.

• Then a Relation P : A→ B is a non-empty subset of A×B

• We write any of P : x 7→ y, x P
−→y, xPy,x Py to mean (x, y) ∈ P

• A is called the Domain or domP

• B is called the Co-domain or codomP

• {y|(x, y) ∈ P} is called the Range or ranP .

• {x|(x, y) ∈ P} is called the Pre-range or preranP

• P is One-many iff ∃x ∈ A,∃y1, y2 ∈ B; (x, y1), (x, y2) ∈ P ∧ y1 6= y2

• This implies that P is not one-many iff ∀x ∈ A,∀y1, y2 ∈ B; (x, y1), (x, y2) ∈ P ⇒
y1 = y2

• P is Many-one iff ∃x1, x2 ∈ A, ∃y ∈ B; (x1, y), (x2, y) ∈ P ∧ x1 6= x2

• This implies that P is not many-one iff ∀x1, x2 ∈ A,∀y ∈ B; (x1, y), (x2, y) ∈ P ⇒
x1 = x2

• P is Many-many iff it is one-many and many one.

• P is One-one(Injection) iff it is not one-many and not many-one.

• P is Onto(Surjection) iff ranP = B. Note that P is onto iff ∀y ∈ B∃x ∈
A; (x, y) ∈ P

• P is a Bijection iff it is one-one and onto

• P−1 : B → A defined by P−1 = {(y, x)|(x, y) ∈ P} is the Inverse relation of P

• If Q : B → C is also a relation,we define the Composite relation Q ◦ P : A → C
as Q ◦ P = {(x, z)|(x, y) ∈ P ∧ (y, z) ∈ Q, y ∈ ranP ∩ preranQ}. So we need to
ensure that ranP ∩ preranQ 6= ø.

Definition 11. Function. Let A,B be non-empty sets.

• Then the function f : A → B is a relation which is not one-many and A =
preranf . This allows us to write (x, y) ∈ f as f(x) = y

• The inverse function f−1 is the inverse relation f−1 : B → A which is also a
function. This requires f to be a bijection.

• Let g : B → C is also a function. Now the requirement ranf ∩ prerang 6= ø is
for the composite relation g ◦ f : A → C is automatically satisfied. It can be
easily shown that this is also a function. Being a functions we can simply write
(g ◦ f)(x) = g(f(x)) for all x ∈ A

• When A,B subsets of R we say that f is a real valued function.
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Definition 12. Let f, g : A→ B be real valued functions. We define

1. (f + g)(x) = f(x) + g(x) for all x ∈ A

2. (f − g)(x) = f(x)− g(x) for all x ∈ A

3. (fg)(x) = f(x)g(x) for all x ∈ A

4. (fg )(x) = f(x)
g(x) for all x ∈ A if g(x) 6= 0

Definition 13. Countable set
A set A is said to be Countable iff there exists a one-one function f : A→ Z+

A set is Uncountable iff it is not countable.

Example 6.

1. Evaluate (
√
x)2,
√
x2, sin(sin−1 x), sin−1(sinx)

2. Find the maximal domain and range of f(x) = x2 and define the inverse functions√
(·) and −

√
(·).

3. Do the above for exp, sin, cos, tan functions.

4. Let f(x) = x + 1
x. Find the range and domain. Show that the function is not

one-one. Restrict the domain and find an inverse function.

5. Let f : A → B be a bijection. Show that (f ◦ f−1)(y) = y for all y ∈ B and
(f−1 ◦ f)(x) = x for all x ∈ A.

6. Let f(x) = 1−x
1+x and g(x) = 4x(1− x) with suitable domains. Find f ◦ g and g ◦ f .

7. Let F be the set of onto functions f : A → A. Is F under the composition
operations ◦ form a Group(structure similar to R with +)?

8. Let f : A→ B and C,D ⊆ A and let f(C) = {f(x)|x ∈ C}. Show that f(C∪D) =
f(C) ∪ f(D) and f(C ∩D) ⊆ f(C) ∩ f(D)

9. Show that the composition of two one-one functions is one-one and the composition
of two onto functions is onto.

10. Show that the integers and rational numbers are countable, but irrationals are
uncountable.

11. Show that a subset of a countable set is countable and that a superset of an un-
countable set is uncountable.
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Definition 14. Limit. a, L ∈ R
limx→a f(x) = L⇔ ∀ε > 0∃δ > 0∀x, 0 < |x− a| < δ ⇒ |f(x)− L| < ε

Example 7. Show that limx→2 2x+ 3 = 7, limx→2 x
2 = 4, limx→2

x−1
2x+1 = 1

5.

Example 8. Prove the following with limx→a f(x) = L ∈ R, limx→a g(x) = M ∈ R

1. limx→a f(x) + g(x) = L+M

2. limx→a f(x)− g(x) = L−M

3. limx→a f(x)g(x) = LM

4. limx→a
f(x)
g(x) = L

M provided M 6= 0

5. limx→b f(g(x)) = L provided that limx→a f(x) = L and limx→b g(x) = a and that
g(x) 6= a for 0 < |x− b| < δ for some δ.

Definition 15. Similarly limits correspond to any of the following combinations can
be defined. Here δ, ε,N,M > 0

x→ a : a− δ < x < a+ δ, x 6= a f(x)→ L : L− ε < f(x) < L+ ε

x→ a+ : a < x < a+ δ f(x)→ L+ : L ≤ f(x) < L+ ε

x→ a− : a− δ < x < a f(x)→ L− : L− ε < f(x) ≤ L

x→∞ : x > N f(x)→∞ : f(x) > M
x→ −∞ : x < −N f(x)→ −∞ : f(x) < −M

Theorem 2.
limx→a f(x) = L⇔ limx→a− f(x) = L ∧ limx→a+ f(x) = L

limx→a f(x) = L− ∨ limx→a f(x) = L+ ⇒ limx→a f(x) = L

Example 9. Suppose limx→a f(x) =∞, limx→a g(x) =∞.
Show that limx→a f(x) + g(x) =∞. We can agree to write ∞+∞ =∞. In the same
way justify the following notation with b ∈ R

1. ∞+ b =∞

2. b∞ =∞ if b > 0

3. b∞ = −∞ if b < 0

4. ∞∞ =∞

5. a
∞ = 0

6. Show that you can’t have a consistent notation for ∞−∞, 0∞, ∞∞ ,
0
0. Hence these

are called indeterminate forms(together with 00,∞0, 1∞).

Theorem 3. Well-known limits
1. limx→a

xn−an
x−a = nan−1

2. limx→0
sinx
x = 1

3. limx→∞
(
1 + a

x

)x
= ea
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Definition 16. Monotonic Functions
f is Increasing on A ⊂ R iff ∀x1, x2 ∈ A, x2 > x1 ⇒ f(x2) ≥ f(x1)
f is Decreasing on A ⊂ R iff ∀x1, x2 ∈ A, x2 > x1 ⇒ f(x2) ≤ f(x1)
f is Increasing at a iff ∃δ > 0∀x, (−δ < x− a⇒ f(x) ≤ f(a)) ∧ (x− a < δ ⇒ f(a) ≤
f(x))
f is Decreasing at a iff ∃δ > 0∀x, (−δ < x− a⇒ f(x) ≥ f(a))∧ (x− a < δ ⇒ f(a) ≥
f(x))
Strict means no =
Monotonic is either increasing or decreasing.

Theorem 4. Monotone Convergence Theorem(for real valued functions)
Suppose f is bounded above and increasing on R. Then limx→∞ f(x) = sup{f(x)}.
Suppose f is bounded below and decreasing on R. Then limx→∞ f(x) = inf{f(x)}.
Theorem 5. Sandwich/Squeeze Theorem
Suppose f(x) ≤ g(x) ≤ h(x) for 0 < |x − a| < δ and limx→a f(x) = limx→a h(x) = L.
Then limx→a g(x) = L.

Example 10.

1. See if the above two theorems can be generalized for other cases of limits.

2. Use the inequality sin θ cos θ < θ < tan θ valid for 0 < θ < π
2 to show that

limθ→0
sin θ
θ = 1

3. Show that limx→∞ sinx does not exist and deduce that limx→0+ sin 1
x does not exist.

4. given a > 0 prove that limx→a
xn−an
x−a = nan−1 for n ∈ Q

5. Let p(x) = x13 + 17x12 − 10x11 + 1. Prove that limx→∞ p(x)1/13 − x = 17
13

6. Prove that limx→0
sin−1 x
x = 1

7. Show that limx→0 x sin 1
x exists.

8. Show that limx→0 e
1/x does not exist.

9. Let f(x) = 1 when x ∈ Q and f(x) = 0 when x ∈ R−Q. Prove that limx→0 f(x)
does not exist but limx→0 xf(x) exists.

Definition 17. Continuity
f is Continuous at a iff limx→a f(x) = f(a)
Being a limit it has two sides. f(a+) = limx→a+ f(x) and f(a−) = limx→a− f(x)
f is Right Continuous at a iff f(a+) = f(a)
and f is Left Continuous at a iff f(a−) = f(a)
Therefore f is continuous at a iff f(a−) = f(a) = f(a+)
f is continuous on A ⊂ R iff f is continuous at each a ∈ A. At the boundary of A
this means the left or right continuity as desired.
We write f ∈ C(A) to mean this where C(A) is the set of continuous functions on A.
When the set is understood from the context we simply write f ∈ C.
We can ignore the concepts of left and right continuity and talk only about continuity
if we make sure that f is continuous on a larger open interval.
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Theorem 6. f is continuous at a iff
∀ε > 0∃δ > 0∀x, 0 < |x− a| < δ ⇒ |f(x)− f(a)| < ε iff
∀ε > 0∃δ > 0∀x, |x− a| < δ ⇒ |f(x)− f(a)| < ε

Example 11.

1. Define f(0) so that f(x) = x sin 1
x , x 6= 0 is continuous at 0

2. Show that sinx is a continuous function.

3. Let limx→a f(x) = L, limx→b g(x) = a and that f is continuous at a. Then show
that limx→b(f ◦ g)(x) = L

4. Suppose that f is continuous at a and f(a) > 0. Show that f(x) > 0 for all
x ∈ (a− δ, a+ δ) for some δ > 0.

Theorem 7. Intermediate Value Theorem
Suppose f is continuous on [a, b] and f(a) 6= f(b) and that u is strictly between f(a)
and f(b)(i.e f(a) < u < f(b) or f(b) < u < f(a)). Then there exists c ∈ (a, b) such
that f(c) = u.

Proof 1. Using the Completeness axiom on the set B = {x ∈ [a, b]|f(x) < u} when
f(a) < u < f(b)

Example 12.

1. Show that there is a real root of x = e−x on [0, 1].

2. Find intervals that contains the real roots of p(x) = x13 + 17x12 − 10x11 + 1

Theorem 8. Boundedness Theorem
Suppose f is continuous on [a, b]. Then f is bounded on [a, b].

Theorem 9. Extremum Value Theorem
Suppose f is continuous on [a, b]. Then f has a maximum and a minimum on [a, b].

Proof 2. Uses the Bolzano-Weistrass Theorem(which will be discussed under sequences)

Definition 18. Differentiability
f is Differentiable at a iff limx→a

f(x)−f(a)
x−a = limh→0

f(a+h)−f(a)
h ∈ R

In that case we call this limit the Derivative of f at a and write f ′(a)
Being a limit it has two sides.
f is Right Diffentiable at a iff limx→a+

f(x)−f(a)
x−a ∈ R and in that case we write f ′+(a)

for the limit and call it the Right Derivative of f at a.
f is Left Diffentiable at a iff limx→a−

f(x)−f(a)
x−a ∈ R and in that case we write f ′−(a) for

the limit and call it the Left Derivative of f at a.
Therefore f is differentiable at a iff f ′−(a) = f ′+(a) = f ′(a) ∈ R
f is differenatiable on A ⊂ R iff f is differantiable at each a ∈ A. At the boundary of
A this means the left or right differenatiability as desired.
We write f ∈ D(A) to mean this where D(A) is the set of differentiable functions on
A.
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When the set is understood from the context we simply write f ∈ D.
We can ignore the concepts of left and right differentiability and talk only about differ-
antiability if we make sure that f is differantiable on a larger open interval.
When the derivative is also continuous we write f ∈ C1 where C1 is the set of contin-
uously differentiable functions.

Theorem 10. Differantiability implies Continuity
If f is differantiable at a then f is continuous at a
If f is right differantiable at a then f is right continuous at a
If f is left differantiable at a then f is left continuous at a

Theorem 11. Let f, g be differantiable functions, then

1. (f + g)′ = f ′ + g′

2. (f − g)′ = f ′ − g′

3. (fg)′ = fg′ + f ′g

4. (fg )′ = f ′g−fg′
g2 when g(x) 6= 0

5. (f ◦ g)′ = (f ′ ◦ g)g′

Example 13.

1. Determine which of the functions |x|, x+ |x|, x|x| are differentiable

2. Define f(0) so that f(x) = x2 sin 1
x is continuous at 0. Also show that then f is

differeantiable at 0.

3. Let f be differentiable at a. Show that if f ′(a) > 0 then f is increasing at a and
if f ′(a) < 0 then f is decreasing at a.

4. Show that the right derivative of
√
x does not exist(not right differenatible) at 0.

5. Let f be differenatiable. Show that iff limx→∞ f
′(x) =∞ then limx→∞ f(x) =∞

6. Let f be differenatiable. Show that iff limx→∞ f
′(x) = 0 then limx→∞ f(x) = L ∈ R

7. (Darboux’s Theorem)Show that the Intermediate Value Theorem holds for f ′ even
without the derivative being continuous. i.e. Let f be differantiable on [a, b] with
f ′(a) 6= f ′(b) and u is strictly between f ′(a) and f ′(b). Then there exists c ∈ (a, b)
such that f ′(c) = u. Use the function g(x) = ux− f(x).

Definition 19.
f has a Local Maximum at a iff ∃δ > 0∀x, |x− a| < δ ⇒ f(x) ≤ f(a)
f has a Local Minimum at a iff ∃δ > 0∀x, |x− a| < δ ⇒ f(x) ≥ f(a)
Extremum is either a minimum or a maximum.
a is a Critical Point of f iff it is not differentiable at a or f ′(a) = 0.

Theorem 12. Let f be differantiable. If a is a local extremum then f ′(a) = 0.
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Theorem 13. Rolle’s Theorem
Let f be continuous on [a, b] and differeantiable on (a, b) and f(a) = f(b). Then there
exists c ∈ (a, b) such that f ′(c) = 0.

Proof 3. Using the extremum value theorem and that f ′(x) = 0 at extremums.

Theorem 14. Mean Value Theorem
Let f be continuous on [a, b] and differeantiable on (a, b). Then there exists c ∈ (a, b)

such that f ′(c) = f(b)−f(a)
b−a .

Theorem 15. Cauchy Mean Value Theorem
Let f, g be continuous on [a, b] and differeantiable on (a, b) and g′(x) 6= 0. Then there

exists c ∈ (a, b) such that f ′(c)
g′(c) = f(b)−f(a)

g(b)−g(a) .

Proof 4. Use the Rolle’s theorem on h(x) = f(x)− f(a)− f(b)−f(a)
g(x)−g(a)(g(x)− g(a))

Definition 20. Second and higher order derivatives
limx→a

f ′(x)−f(a)
x−a = f ′′(a) is the Second Derivative when the limit exists and finite

limx→a
f (n−1)(x)−f (n−1)(a)

x−a = f (n)(a) is the nth Derivative, when the limit exists and finite

We write f ∈ Dn to mean that the f (n) is existing and write f ∈ Cn to mean that f (n)

is existing and continuous.
We write f (0)(x) for f(x)

Theorem 16. Let f ′′ be exists on (a, b) and x, c ∈ (a, b). Then there exists ζ between

c and x such that f(x) = f(c) + f ′(c)(x− c) + f ′′(ζ)
2 (x− c)2

Theorem 17. Second Derivative Test
Let f ′′ exists and continuous(i.e. f ∈ C2) and f ′(c) = 0.
If f ′′(c) > 0 then c is a local minimum. If f ′′(c) < 0 then c is a local maximum.

Theorem 18. Taylor Polynomial
Let f (m+1) exists on (a, b) and x, c ∈ (a, b). Then there exists ζ between c and x such

that f(x) =
∑m

n=0
f (n)(c)
n! (x − c)n + f (m+1)(ζ)

(m+1)! (x − c)m+1. The sum is called the Taylor

Polynomial Tm(x) and the last term is called the Remainder Rm(x).

Proof 5. Use Cauchy mean value theorem on F (t) =
∑m

n=0
f (n)(t)
n! (x− t)n and G(t) =

(x− t)m+1 keeping x fixed.

Example 14.

1. Show that if f is differentiable on (a, b) and f ′(x) ≥ 0 then f is increasing on
(a, b).

2. Show that | sinx− sin y| ≤ |x− y| for all x, y ∈ R.

3. Show that x−1
x < lnx < x− 1 for all x > 1

4. Let f : [0,∞)→ R be differantiable on (0,∞) and assume that limx→∞ f
′(x) = b.

Show that limx→∞
f(x)
x = b
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5. Let f, g be differentiable on R and f(0) = g(0) and f ′(x) ≤ g′(x) for all x ≥ 0.
Show that f(x) ≤ g(x) for all x ≥ 0.

6. Draw a rough sketch of the graph f(x) = x− 1
x

7. Write down the Taylor’s Polynomial and Remainder for ex, sinx, cosx, ln(1 +
x), tan−1 x at x = 0.

Theorem 19. L’Hopital Rule
1. f(a) = g(a) = 0
2. f, g are continuous on [a, a+ δ)
3. f, g are differentiable on (a, a+ δ)
4. g′ 6= 0 on (a, a+ δ)

5. limx→a+
f ′(x)
g′(x) = L

then limx→a+
f(x)
f(x) = L

Note 1. The above is valid
1. When L = ±∞
2. lim f(x) = g(x) = 0 for any limit with conditions satisfied on the associated region.
3. lim f(x) = g(x) =∞ for any limit with conditions satisfied on the associated region.

Example 15. Evaluate the following limits
1. limx→ 1

2

ln 2x
2x−1

2. limx→0
x2 sin 1

x

sinx

3. limx→0+
lnx

cotπx

4. limx→0
secx−1
x sin 2x

5. limx→∞
π
2−tan

−1 x

x−1

6. limx→0−
1−secx
x3

7. limx→π
4
(tanx)tan 2x

8. limx→0

(
tanx
x

) 1
x2

9. limx→0

(
1
x2 − cot2 x

)
10. limx→0+(sinx)x

11. Prove the other versions of the L’Hopital rule.

Definition 21. Sequance
A sequence u(n) is a function u : Z+ → R
We usually write the image of n : u(n) as un.

Definition 22. Convegence
A sequence un is converging iff limn→∞ un = L ∈ R
ie.iff ∃L ∈ R∀ε > 0∃N ∈ Z+∀n, n > N ⇒ |un − L| < ε
un is diverging iff it is not converging.

Theorem 20.
Every sequence which is increasing and bounded above is converging.
Every sequence which is decreasing and bounded below is converging.
Every converging sequence is bounded.
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Example 16. Check the convergence of the following sequences
1. un = (−1)n

2. un+1 = k
1+un

, k > 0, u1 > 0

3. un+1 = 1
2(un + a

un
), a > 0

4. un+2 = 1
2(un + un+1), x1 = a, x2 = b

Definition 23. Sub Sequance
Let u : Z+ → R be a sequence and v : Z+ → Z+ be an increasing sequence. Then
u ◦ v : Z+ → R is a subsequence of un

Theorem 21.
Every sequence has a monotone(either increasing or decreasing) subsequence.

Theorem 22. Bolzano-Weistrass
Every bounded sequence has a converging subsequance.

Proof 6.
Using the above theorem and the fact that bounded monotone sequences converge.

Example 17. Find converging subsequances of the following sequences
1. un = (−1)n

2. 1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 , · · ·

3. un = sinn

Definition 24. Cauchy Sequance
A sequence un is Cauchy iff ∀ε > 0∃N ∈ Z+∀m,n;m,n > N ⇒ |un − um| < ε

Theorem 23.
Every converging sequence is Cauchy.
Every Cauchy sequence is converging

Definition 25. Series
Given a sequence un, a series is the sequence sm =

∑m
n=1 un

We usually write
∑∞

n=1 un to mean this series.

Theorem 24. If
∑∞

n=1 un is converging then limn→∞ un = 0.
Or equivalentyl if limn→∞ un 6= 0 then

∑∞
n=1 un is diverging.

Theorem 25. Comparison Test
Let 0 < un < vn. Then
If
∑∞

n=1 vn is converging then
∑∞

n=1 un is converging.
or equivalently If

∑∞
n=1 un is diverging then

∑∞
n=1 vn is diverging.

Theorem 26. Limit Comparison Test
Let 0 < un < vn and limn→∞

un
vn

= R.
1. R ∈ (0,∞),

∑∞
n=1 un is converging ⇔

∑∞
n=1 vn is converging

2. R = 0 and
∑∞

n=1 vn is converging ⇒
∑∞

n=1 un is converging
3. R =∞ and

∑∞
n=1 vn is diverging ⇒

∑∞
n=1 un is diverging

Theorem 27. Integral Test
Let u : [1,∞)→ (0,∞) be a decreasing function which is integrable.
Then

∑∞
n=1 u(n) converging iff

∫∞
1 u(x)dx ∈ R
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Theorem 28. ζ(p) =
∑∞

n=1
1
np is converging iff p > 1.

Definition 26. Absolute convergence
A series

∑∞
n=1 un is Absolutely Converging iff

∑∞
m=1 |un| is converging.

Theorem 29. absolutely converging ⇒ converging

Theorem 30. Ratio Test
Consider the series

∑∞
n=1 un with un 6= 0. Let limn→∞

∣∣∣un+1

un

∣∣∣ = R.

1. If R < 1 then the series is converging absolutely
2. If R > 1 then the series is diverging

Theorem 31. Root Test
Consider the series

∑∞
n=1 un. Let limn→∞ |un|

1
n = R.

1. If R < 1 then the series is converging absolutely
2. If R > 1 then the series is diverging

Definition 27. Alternating series
A series

∑∞
n=1(−1)n+1un is an alternating series provided un > 0

Theorem 32. Let
∑∞

n=1(−1)n+1un be an alternating series.
If un is decreasing and limx→∞ un = 0 then the series is converging.

Example 18. Check the convergence of the following series
1.
∑∞

n=1(−1)n 2.
∑∞

n=1
2

n2+3 3.
∑∞

n=1
n

n2+3 4.
∑∞

n=1
3n−2

n(n+1)(n+2) 5.
∑∞

n=1
(n!)2

(2n)!

6.
∑∞

n=1(
n
n+1)n

2

7.
∑∞

n=1

√
n+1−

√
n

n 8.
∑∞

n=1 cos 1
n 9.

∑∞
n=1

sinn
n2

10.
∑∞

n=1
sinn
n 11.

∑∞
n=1

(−1)n−1√
n

Definition 28. Power Series
Is a series of the form

∑∞
n=0 an(x− c)n where x is a variable and c is a constant.

sup{r|series converges for|x− c| < r} is called the Radius of convergence R.
(c−R, c+R) is called the Range of Convergence.
We can use the ratio test or the root test to find R

Theorem 33. Taylor Series
Let f be infinitely many times differentiable on (a, b) and x, c ∈ (a, b). If the Remainder

Rm(x)→ 0 as m→∞ for x ∈ (c−R, c+R) ⊂ (a, b) we have f(x) =
∑∞

n=0
f (n)(c)
n! (x−c)n

on the same interval and we call this the Taylor Series of f at c. Taylor Series can be
used to define the corresponding functions.

Example 19. Find the Taylor Series and the radius of convergence of the following
functions at 0
1. ex

2. sinx
3. cosx
4. ln(1 + x)
5. tan−1 x
6. x3 + x2 + 1
7. f(x) = e−

1
x2 with f(0) = 0


