1) Find $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$.
2) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is converging.
3) Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is diverging.
4) State the range of $p$ for which $\zeta(p)=\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is converging.
5) State and prove the comparison test.
6) Comment on the convergence of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
7) Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.(optional)
