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3.2 Active filters 
 
The filters that we have studied so far have all been passive filters – that is, they 
consisted only of passive components. The Butterworth and Chebyschev filters 
were both passive reactive filters and had only capacitors and inductors. 
 
With the advent of LSI and VLSI, it became necessary to look at the possibility of 
implementing a filter circuit within an IC. It is possible to implement resistors and 
capacitors using film technology (even though implementing resistors is 
comparatively more difficult), but there is no way to construct an inductor. This 
necessitated the development of techniques to realise networks with inductors 
using only resistors and capacitors. Active circuits such as gyrators and negative 
impedance converters are used for this purpose. 
 
NICs and gyrators are implemented using operational amplifiers. Operational 
amplifiers may also be used directly to implement transfer functions representing 
filter characteristics, using their high gaim, high input impedance and low output 
impedance characteristics. There are however limitations on their frequency 
spectrum, and filters operating at high frequencies, such as in communication 
circuits are still implemented using inductors. 

3.2.1 Active filters using gyrators 
 
A gyrator is a device that converts a load impedance in to an input impedance 
proportional to its inverse. Assuming a voltage controlled current source (VCCS), 
we can represent a gyrator as follows. [The constant of proportionality (g) 
between the voltage and the current is called its gyration ration.]  
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V2V1

.

.

.

 
Representing this circuit with its (ABCD) parameters, we have: 
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This gives: 
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Symbolically, a gyrator is represented by: 

I1 I2

V2V1

 
 
We will now show that this circuit represents an inversion of the impedance. 
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If we have a capacitance C at the output, then,  
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This is the same as the impedance of an inductance L = C/g2.  
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To obtain the equivalence for a series inductance, we have to connect two 
gyrators in cascade: 
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If the terminal impedance is Z, the impedance looking in at the intermediate port 
is 1/g2Z, as before. This now appears in parallel with the impedance of the 
capacitance C to give
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With this at the output port of the first gyrator, the input impedance is: 
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This is equivalent to a series inductance of C/g2, followed by the original 
impedance across the final output port. 
 
Let us now see how we can implement a complete LC filter without the use of 
inductors. We will consider a circuit derived in an earlier lecture:: 
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This may be realised as: 

4.77mH 26.5 nF 4.77mH  
Realisation of the gyrator 
 
The following circuit is a possible realisation of a gyrator using operational 
amplifiers. It approximates an ideal gyrator as R0 → 0. 
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3.2.2 Active filters using NICs 
 
Another device used in the design of active filters is the negative impedance 
converter (NIC).  
 
An ideal NIC is a two-port network, which converts a load impedance to an input 
impedance, which is proportional to the negative of the load impedance.  
 
The following figures illustrate voltage and current controlled NICs  
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Their ABCD parameters are: 
 
Voltage controlled NIC (VNIC): 
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Current controlled NIC (INIC) 
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Realisation of an INIC (The ration k= R1/R2 = 1/(α-1)) 
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3.2.3 The state-variable filter 
 
We have earlier (in Chapter 2) seen how to obtain a state-space representation 
of a transfer function, and how such a system may be realised using a series of 
integrators and summers. This approach may be used to implement a filter using 
operational amplifiers. An operational amplifier with capacitive feedback functions 
as an integrator while resistive feedback produces a summer. 
 
We will see how to connect two integrators and a summer to obtain a second 
order filter realisation.  
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We have the relationships: 
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Rearranging to get the transfer functions between r and the other variables: 
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We see that the outputs x, y and z correspond to standard second order high-
pass, band-pass and low-pass filter responses. The coefficients of the terms in s 
and s2 may be adjusted simply by changing the gain and integrator time 
constants as desired. We have also seen before that any higher order transfer 
function may be broken down into a series of second order terms and possibly 
one first order term. This fact is used to implement higher order filters. 

3.2.4 Switched capacitor filters  
Even though it is possible to build in resistors into integrated circuits, they do 
present difficulties. It is advantageous if we can dispense with their use and use 
only capacitors. It is also difficult to achieve great accuracy in the construction of 
individual resistors and capacitors (typical accuracies are in the order of 30%) 
whereas accuracies of almost three orders of magnitude lower (about 0.05%) are 
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possible if we only require ratios between capacitors, rather than their absolute 
values. These are the motivations for the development of switched capacitor 
filters. We will first try to understand how switched capacitors can simulate a 
resistor.  

v1 v2
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1 2
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The figure shows a capacitor C connected to a switch S that has two positions 1 
and 2, connected to two terminals maintained at voltages v 1 and v2. For 
simplicity, we will assume that all connections are ideal and without resistance, 
so that the capacitor charges up instantly to the relevant voltage upon connection 
to either of the two terminals. 
 
When S is at 1, the capacitor charges up to voltage v1, so that the charge on the 
capacitor is Cv1. If the switch is now thrown over to 2, the charge changes to Cv2, 
that is, a charge of C(v1 –v2) is delivered from 1 to 2 when the switch is thrown 
from 1 to 2, assuming that v1 > v2. 
 
Let us now assume that the switch toggles between 1 and 2, at a frequency of  
f Hz. Then, the charge transfer per unit time (that is, the current flow) is  

fvvCi )( 21 −=  
Comparing this with the current flow through a resistor R connected between 1 
and 2, we can write: 

CfR /1=  
We have a simulated resistor, whose value may be changed at will simply by 
changing the clock frequency! The other advantage we were looking for, that of 
only requiring ratios between capacitors rather than their absolute values, 
becomes apparent when we use this simulated resistor to construct an integrator 
using an operational amplifier. It is best to use ratios close to unity, for greater 
accuracy.  

S
vin vout

C1

C2

f

 
The above integrator has a natural frequency of 21 /CfC or a time constant of 

fCC 12 / .  


