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2.3 Solution of network equations 

Introduction 
 
Sparse matrices are an important phenomenon in engineering. They occur 
regularly in network problems, and so, special methods used in their solution are 
of importance to us. 
 
Let us consider a simple network with three nodes (that is, two node pairs) with 
each node connected to the other two. If we write the nodal equations, we will 
have  
 
 YV = I 
 
Where Y is a 2 x 2 admittance matrix and V and I are 2 x 1 vectors. All elements 
of Y will be full (or have a non-zero entry.) However, if we take a circuit with ten 
nodes, with each node connected to three others, we will have a 9 x 9 
admittance matrix with only a maximum of 36 non-zero elements, out of a total of 
81. With a large network of (say) 1000 x 1000, it is possible to have less than 
5000 non-zero elements, out of a total of one Million entries.  This is one instance 
of how sparse matrices arise. 
 
Common methods of solving matrix equations are quite inefficient in dealing with 
sparse matrices, and special methods are in use, which exploit their special 
features 
 
We will first examine the most obvious solution of the equation we considered 
earlier: 
 
 YV=I 
 V = Y-1 I 
 
where Y-1 is the inverse of Y. Matrix inversion is computationally very inefficient, 
even for a full matrix, for we have to evaluate the co-factor of each element of the 
matrix. This means that a (n-1) x (n-1) determinant has to be evaluated for each 
of the n2 elements of the matrix, that is a total of (n-1)n! multiplications..  
 
We will then look at Gaussian elimination as an algorithm for the solution of a 
matrix equation. We will also look at how equation ordering affects the accuracy 
of the solution.  
 
Finally, we will look at LU factorisation and Cholesky factorisation 
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We have already examined the role of equation reordering and pivoting as a 
means of improving the accuracy of computation. When considering sparse 
matrices, we also need to be concerned about the need to conserve sparsity in 
the solution process, We have seen how inversion tends to almost completely fill 
up an originally sparse matrix, and that both Gaussian elimination and LU 
factorisation sometimes introduce new non-zero elements.  
 
If we are interested in sparsity (as a means of reducing both storage 
requirements and computation time), we should consider special reordering 
schemes directed towards conserving sparsity. There are a variety of such 
schemes, each with its own merits and demerits. Some are very simple, and can 
be implemented with minimum time and effort, but are not very effective. They 
can be used when we are interested in only one run of the solution of a set of 
equations. More complex methods require relatively more effort, and can be 
justified when we have to resort to repeated runs.  
 
A reordering scheme for sparse matrices to be useful will have to incorporate 
reordering techniques for both reduction of round off errors and for the 
preservation of sparsity. 
 
Finally, we examine how a sparse matrix can be stored, so as to exploit its 
special features. In particular, we need to develop techniques of storage and 
retrieval that will reduce the total storage requirements while facilitating quick and 
easy data access –that is both writing and reading. These methods are together 
known as sparsity programming 

2.3.1 Solution of linear state equations through  
Laplace transformation 

 
Let us consider the system of state space equations: 
 

BuAxx +=&  
 
Laplace transformation of these yields: 
 

),()()0()( sBUsAXxssX +=−  
where 
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The solution consists of two parts: 

 
• { })0()( 11 xAsIL −− − , which is the contribution made by the initial 

conditions. This is a transient, but it is not the complete transient. 
 

• { })()( 11 sBUAsIL −− − , which is the contribution made by the inputs to 
the system. 

 
This contribution consists of two parts itself, a transient term and a steady state 
term. Both these contain the term 1)( −− AsI . 
Now, 

AsI
AsIadjAsI

−
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== − )()( 1  

AsI −  is a polynomial in s, of degree n. 

Each element in )( AsIadj − is a polynomial in s, of degree (n-1) or less.  
 

Each element of 
AsI
AsIadj
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 can be split up into partial fractions of the form: 
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if there is one root of multiplicity q. 
 
These λ’s are the eigen-values of the system, and 0=− AsI is the 
characteristic equation of the system. The eigen-values are the roots of the 
characteristic equation. AsI − is known as the characteristic polynomial. The 
eigen-values may be either real, or they occur in complex conjugate pairs. 
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Example: 
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The Laplace transform of the response due to the initial conditions = 
)0()( 1xAsI −−  
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The Laplace transform of the response due to the input = 

)()( 1 sBUAsI −−  
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Then, the transform of the total response  
= The transform of the response due to initial conditions 
+ The transform of the response due to the input. 
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In the time domain, the response = 
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2.3.2 Solution of transient equations 
 
We have studied about the methods for the solution of linear algebraic equations 
that arise in the steady state solution of networks. We will now look at how 
differential equations describing the transient behaviour of networks may be 
handled. 
 
Earlier, we studied about the dynamic representation of networks, through the 
formulation of state space equations. Our treatment of electrical circuits was 
limited to time-invariant systems, in that we assumed that parameters such as 
the resistance, inductance or capacitance of an element were not functions of 
time. We will continue with this assumption, and restrict our treatment to time-
invariant systems. 
 
Analytical methods for the solution of systems of differential equations exist only 
for a limited class of simple, linear equations. For the study of more complex and 
non-linear systems, we need to convert the differential equations to difference 
equations, and then apply numerical techniques for their solution. We will study 
analytical methods for the solution of systems of differential equations and also 
some numerical techniques for the solution of systems of difference equations. 
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Analytical solution of linear state equations 
 
We have already noted the relationship between the state space representation 
and the s-plane representation of a system. One approach to the solution of state 
equations is through its Laplace transform. 
 
Another approach would be through the evaluation of the matrix exponential. 
 
As is to be expected, both these solutions are strongly influenced by the eigen-
values of the system. 
 

Numerical solution of state equations: Solution of linear state 
equations through the matrix exponential 
 
We have seen that the solution to 

BuAxx +=& is 
 

{ } { })()()0()()( 1111 sBUAsILxAsILtx −−−− −+−=  
 
Let  { } )()( 11 tAsIL Φ=− −−   
 
Therefore, (by the convolution theorem): 
 

∫ −Φ+Φ=
t

dButxttx
0

)()()0()()( τττ  

 
We now need to evaluate Φ(t). 
 
We will assume a power series solution for the homogeneous equation Axx =& ,  
of the form: 
 

....)( 2
210 +++= tataatx  

 
This gives: 
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Equating coefficients of powers of t, we have: 
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We also have, by substitution t=0 in our power series, 
 
a0 = x(0) 
 
This gives us the solution: 
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The solution of the complete equation 

BuAxx +=& is: 
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Matrix inversion 
 
We will consider the following equation, which we have already encountered: 
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Let us assume some numerical values for each Gi and for is.  
G1 = g3 = G5 = 1, 
G2 = G4 = G6 = 2, 
Is=1 
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Then the equations would be: 
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To compute the inverse of this matrix, we need to first compute its determinant: 
 
∆ = 5(25-4) + 2(-10-4)-2(4+10) = 49 
 
We then have to compute the co-factor of each element ∆ij to obtain: 
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Now, writing  
 
 V=G-1 I,  
We have: 
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We can use MATLAB to obtain this result using: 
 
G=[5 -2 -2;-2 5 -2;-2 -2 5] 
 
G = 
 
     5    -2    -2 
    -2     5    -2 
    -2    -2     5 
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is=[1;0;0] 
 
is = 
 
     1 
     0 
     0 
 
v=inv(G)*is 
 
v = 
 
    0.4286 
    0.2857 
    0.2857 
 
We can use the “spy” instruction to plot the non-zero elements of G: 
 
Spy(G) 
 

 
 
and of G-1:  
 
 
Spy(inv(G)) 
 
 

 
 
They are both full matrices and nothing (in terms of storage etc.) is gained or lost. 
 
Now lets look at the next example we considered, of three such networks 
connected in cascade. The non-zero elements of the original matrix and of its 
inverse are as shown: 
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G=[5 -2 -2 0 0 0 0;-2 5 -2 0 0 0 0; 
-2 -2 10 -2 -2 0 0;0 0 -2 5 -2 0 0; 
0 0 -2 -2 10 -2 -2;0 0 0 0 -2 5 -2; 
0 0 0 0 -2 -2 5] 
 
G = 
 
     5    -2    -2     0     0     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    10    -2    -2     0     0 
     0     0    -2     5    -2     0     0 
     0     0    -2    -2    10    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0     0     0    -2    -2     5 
 
>> spy(G) 
 

 
 
>> spy(inv(G)) 
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>> inv(G) 
 
ans = 
 
  Columns 1 through 5  
 
    0.3214    0.1786    0.1250    0.0714    0.0536 
    0.1786    0.3214    0.1250    0.0714    0.0536 
    0.1250    0.1250    0.1875    0.1071    0.0804 
    0.0714    0.0714    0.1071    0.2857    0.1071 
    0.0536    0.0536    0.0804    0.1071    0.1875 
    0.0357    0.0357    0.0536    0.0714    0.1250 
    0.0357    0.0357    0.0536    0.0714    0.1250 
 
  Columns 6 through 7  
 
    0.0357    0.0357 
    0.0357    0.0357 
    0.0536    0.0536 
    0.0714    0.0714 
    0.1250    0.1250 
    0.3214    0.1786 

0.1786 0.3214 
0.1787  

>> nnz(G) 
 
ans = 
 
    25 
 
>> nnz(inv(G)) 
 
ans = 
 
    49 
 
We see that the original matrix had only 25 non-zero elements while the inverse 
has 49 non-zero elements, and is full. 
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Gaussian elimination 
 
We will study this algorithm through the example we have been considering: 
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Step 1: Divide the first row by its diagonal element: 
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Eliminate v1 from the other equations by subtracting the relevant multiples of 
equation 1 from the others: 
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We now repeat the process with the second row, that is first, make the diagonal 
element unity, then eliminate the second variable from the third equation: 
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Simplifying: 
 
















=































−
−−

3/2
21/2
5/1

3/700
3/210
5/25/21

3

2

1

v
v
v

 

 
Now, normalising the last equation, we have: 
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This gives the results as: 
 
V3= 2/7 
V2=2/21+2/3 V3 = 2/21+ 4/21 =2/7 
V1= 1/5+2/5 V2 + 2/5 V3 = 1/5 +8/35 = 3/7 
 
We are now in a position to attempt to write down the general algorithm. 
Consider the (n x n) matrix A and (n x 1) vectors x and b, where x is the 
unknown. 
 
Anxnxnx1 = bnx1 
 
Our strategy is to eliminate x1 from all the (n-1) equations, other than the first. To 
do this, we first divide the first equation throughout by a11, so that the revised a11 
is equal to 1.  
 
 For i = 1 to n:  
 

a1i = a1i / a11 
  b1 = b1 / a11 
 
Then, for each of the rows 2 to n, we subtract ai1 times the first row from each 
term, in other words: 
 
 For i = 2 to n: 
 
  bi = bi - ai1 x b1 
 
  For j = 1 to n: 
 
   aij = aij – ai1 x a1j 
    
This would mean that x1 is eliminated from all but the first equation, so that we 
are left with (n-1) equations in (n-1) unknowns. We can then repeat the same 
algorithm for the new (n – 1) x ((n – 1) matrix. Finally, we will be left with only one 
equation, corresponding to the last variable xn: 
 
 xn = bn 
 
The rest of the algorithm consists of the back-substitution process, whereby xn-1 
is calculated using the known value of xn, and then xn-2 is calculated, and so on 
until we obtain all values up to x1. 
  
 x n-1 = b n-1 – a n-1,n  x n 
  
For the general case: 

1.,..,.2,1,
1

−−=−= ∑
+=

nnixabx
n

ij
jijii
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This algorithm suffers from the disadvantage that the solution has to be repeated 
from the very beginning even when the matrix A has not changed at all, but only 
the vector b has changed. We can overcome this difficulty by actually not 
carrying out the operations on b during the forward reduction, but keeping a 
record of the necessary operations. This philosophy has lead to the development 
of algorithms such as the LU factorisation.  
 
The other main problem is that of ill-conditioned or badly ordered matrices.  
 
Re-ordering the equations (row pivoting) or the variables (column pivoting) can 
help to resolve problems with bad ordering.  
 
LU Factorisation 
 
We will consider the same example as before: 
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We would wish to be able to avoid some of the disadvantages of Gaussian 
elimination, in particular, the necessity to re-do all the computations in case of 
having to estimate [v] for a different [i], A remaining the same. 
 
Let us assume that we van find two matrices L and U such that: 
 
L*U = A 
 
L and U being lower triangular and upper triangular, respectively. Then, it would 
be easy to compute x satisfying: 
 
 L*U*x = b 
  
in two steps. First we find y such that: 
 
 L*y = b 
 
Then, x such that: 
 
 U*x = y 
 
For the example chosen: 
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We can now write down each of these terms, almost by inspection: 
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We have now completed the computation of the factored form: 
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We can check whether the factorisation is correct by multiplying L by U using 
MATLAB: 
 
L=[1 0 0;-2/5 1 0;-2/5 -2/3 1]; 
U=[5 -2 -2;0 21/5 -14/5;0 0 7/3]; 
A=L*U 
A = 
 
    5.0000   -2.0000   -2.0000 
   -2.0000    5.0000   -2.0000 
   -2.0000   -2.0000    5.0000        
 
We can also use MATLAB to perform the LU factorisation: 
 
[L,U]=lu(A) 
 
L = 
 
    1.0000          0           0 
   -0.4000     1.0000       0 
   -0.4000    -0.6667     1.0000 
 
 
U = 
 
    5.0000    -2.0000    -2.0000 
         0      4.2000     -2.8000 
         0          0       2.3333   
 
When we need to optimise the use of storage, it is possible to store all the values 
in one matrix, as it is not necessary to store either the zeros or the 1s. There is 
also a distinct MATLAM command for this:           
 
lu(A) 
 
ans = 
 
    5.0000   -2.0000   -2.0000 
    0.4000    4.2000   -2.8000 
    0.4000    0.6667    2.3333             
 
Let us now see the effect of LU factorisation on a sparse matrix. 
We will again use the example we considered earlier. 
 
A = 
 
     5    -2    -2     0     0     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    10    -2    -2     0     0 
     0     0    -2     5    -2     0     0 
     0     0    -2    -2    10    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0     0     0    -2    -2     5 
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spy(A) 

0 2 4 6 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

nz = 25  
» [L,U]=lu(A) 
 
L = 
 
    1.0000         0         0         0         0         0         0 
   -0.4000    1.0000         0         0         0         0         0 
   -0.4000   -0.6667    1.0000         0         0         0         0 
         0         0   -0.2727    1.0000         0         0         0 
         0         0   -0.2727   -0.5714    1.0000         0         0 
         0         0         0         0   -0.2500    1.0000         0 
         0         0         0         0   -0.2500   -0.5556    1.0000 
 
U = 
 
    5.0000   -2.0000   -2.0000         0         0         0         0 
         0    4.2000   -2.8000         0         0         0         0 
         0         0    7.3333   -2.0000   -2.0000         0         0 
         0         0         0    4.4545   -2.5455         0         0 
         0         0         0         0    8.0000   -2.0000   -2.0000 
         0         0         0         0         0    4.5000   -2.5000 
         0         0         0         0         0         0    3.1111    
 
spy(L) 
 

0 2 4 6 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

nz = 16  
spy(U)        
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0 2 4 6 8 

0 
1 
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6 
7 
8 

nz = 16            
spy(lu(A))         

0 2 4 6 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

nz = 25  
 
Notice that in this particular case, there has been no increase in storage 
requirements. This is only if we use one matrix to store both lower and upper 
triangles, with implied storage of zero and unity values.    
 
This is not always the case, and some non-zero elements may be introduced 
during factorisation.   
 
Compare this with the result we obtained with inversion, where the reslting matrix 
was a full matrix. 
 
spy(inv(A)) 
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nz = 49    
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Cholesky factorisation 
 
Unlike the LU factorisation, this works only for symmetric positive definite 
matrices. Similar to the procedure we adopted for the computation of the LU 
factorisation, we can start with the expected result to obtain the factorisation 
algorithm.  
 
The Cholesky factorisation of a symmetric positive definite matrix A produces two 
factors such that: 

A = C’ * C 
 
We will use the MATLAB command to obtain the factors of the matrix we 
considered earlier: 
 
» A=[5 -2 -2 0 -1 0 0; 
-2 5 -2 0 0 0 0; 
-2 -2 11 -2 -2 0 -1; 
0 0 -2 5 -2 0 0; 
-1 0 -2 -2 11 -2 -2; 
0 0 0 0 -2 5 -2; 
0 0 -1 0 -2 -2 5] 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
    -1     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
» C=chol(A) 
 
C = 
 
    2.2361   -0.8944   -0.8944         0   -0.4472         0         0 
         0    2.0494   -1.3663         0   -0.1952         0         0 
         0         0    2.8868   -0.6928   -0.9238         0   -0.3464 
         0         0         0    2.1260   -1.2418         0   -0.1129 
         0         0         0         0    2.8925   -0.6914   -0.8505 
         0         0         0         0         0    2.1265   -1.2171 
         0         0         0         0         0         0    1.6317 
 
» transpose(C)*C 
 
ans = 
 
    5.0000   -2.0000   -2.0000         0   -1.0000         0         0 
   -2.0000    5.0000   -2.0000         0         0         0         0 
   -2.0000   -2.0000   11.0000   -2.0000   -2.0000         0   -1.0000 
         0         0   -2.0000    5.0000   -2.0000         0         0 
   -1.0000         0   -2.0000   -2.0000   11.0000   -2.0000   -2.0000 
         0         0         0         0   -2.0000    5.0000   -2.0000 
         0         0   -1.0000         0   -2.0000   -2.0000    5.0000 
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We will use the MATLAB command nnz to obtain the number of non-zero 
elements of A and C: 
 
» nnz(A) 
 
ans = 
 
    29 
 
» nnz(C) 
 
ans = 
 
    20 
 
We will now examine the effect of re-ordering the equations on sparsity. We will 
use the reordering algorithm symrcm available in MATLAB. Its description is as 
follows: 
 
SYMRCM Symmetric reverse Cuthill-McKee permutation. 
    p = SYMRCM(S) returns a permutation vector p such that S(p,p) 
    tends to have its diagonal elements closer to the diagonal than S. 
    This is a good preordering for LU or Cholesky factorization of 
    matrices that come from "long, skinny" problems.  It works for 
    both symmetric and asymmetric S. 
 
» p=symrcm(A) 
 
p = 
 
     2     1     7     6     3     5     4 
 
» A1=A(p,p) 
 
A1 = 
 
     5    -2     0     0    -2     0     0 
    -2     5     0     0    -2    -1     0 
     0     0     5    -2    -1    -2     0 
     0     0    -2     5     0    -2     0 
    -2    -2    -1     0    11    -2    -2 
     0    -1    -2    -2    -2    11    -2 
     0     0     0     0    -2    -2     5 
 
» chol(A1) 
 
ans = 
 
    2.2361   -0.8944         0         0   -0.8944         0         0 
         0    2.0494         0         0   -1.3663   -0.4880         0 
         0         0    2.2361   -0.8944   -0.4472   -0.8944         0 
         0         0         0    2.0494   -0.1952   -1.3663         0 
         0         0         0         0    2.8452   -1.1716   -0.7029 
         0         0         0         0         0    2.5928   -1.0890 
         0         0         0         0         0         0    1.8221 
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» C1=chol(A1) 
 
C1 = 
 
    2.2361   -0.8944         0         0   -0.8944         0         0 
         0    2.0494         0         0   -1.3663   -0.4880         0 
         0         0    2.2361   -0.8944   -0.4472   -0.8944         0 
         0         0         0    2.0494   -0.1952   -1.3663         0 
         0         0         0         0    2.8452   -1.1716   -0.7029 
         0         0         0         0         0    2.5928   -1.0890 
         0         0         0         0         0         0    1.8221 
 
» nnz(C1) 
 
ans = 
 
    19 
 
Compare with a different reordering algorithm: 
 
SYMMMD Symmetric minimum degree permutation. 
    p = SYMMMD(S), for a symmetric positive definite matrix S, 
    returns the permutation vector p such that S(p,p) tends to have a 
    sparser Cholesky factor than S.  Sometimes SYMMMD works well 
    for symmetric indefinite matrices too. 
 
» q=symmmd(A) 
 
q = 
 
     4     1     2     6     7     3     5 
 
» A2=A(q,q) 
 
A2 = 
 
     5     0     0     0     0    -2    -2 
     0     5    -2     0     0    -2    -1 
     0    -2     5     0     0    -2     0 
     0     0     0     5    -2     0    -2 
     0     0     0    -2     5    -1    -2 
    -2    -2    -2     0    -1    11    -2 
    -2    -1     0    -2    -2    -2    11 
 
» C2=chol(A2) 
 
C2 = 
 
    2.2361         0         0         0         0   -0.8944   -0.8944 
         0    2.2361   -0.8944         0         0   -0.8944   -0.4472 
         0         0    2.0494         0         0   -1.3663   -0.1952 
         0         0         0    2.2361   -0.8944         0   -0.8944 
         0         0         0         0    2.0494   -0.4880   -1.3663 
         0         0         0         0         0    2.7010   -1.5303 
         0         0         0         0         0         0    2.2256 
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» nnz(C2) 
 
ans = 
 
    19 
 
We end up with the same number of non-zero elements after factorisation. We 
will now try a very simple reordering algorithm: reorder by rank of non-zero 
elements in each row. 
 
» r=[2 4 6 1 7 3 5] 
 
r = 
 
     2     4     6     1     7     3     5 
 
» A3=A(r,r) 
 
A3 = 
 
     5     0     0    -2     0    -2     0 
     0     5     0     0     0    -2    -2 
     0     0     5     0    -2     0    -2 
    -2     0     0     5     0    -2    -1 
     0     0    -2     0     5    -1    -2 
    -2    -2     0    -2    -1    11    -2 
     0    -2    -2    -1    -2    -2    11 
 
» C3=chol(A3) 
 
C3 = 
 
    2.2361         0         0   -0.8944         0   -0.8944         0 
         0    2.2361         0         0         0   -0.8944   -0.8944 
         0         0    2.2361         0   -0.8944         0   -0.8944 
         0         0         0    2.0494         0   -1.3663   -0.4880 
         0         0         0         0    2.0494   -0.4880   -1.3663 
         0         0         0         0         0    2.7010   -1.5303 
         0         0         0         0         0         0    2.2256 
 
» nnz(C3) 
 
ans = 
 
    18 
 
The reordering in terms of the rank order of non-zero elements gives the best 
result. 

Solution of ordinary differential equations 
Circuits containing energy storage elements (capacitors and inductors) give rise 
to systems of equations containing derivatives of currents and / or voltages. The 
numerical solution of such equations is based on their conversion to difference 
equations, using approximate representations. 
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Runga-Kutta methods 
 
There is a family of Runga-Kutta methods, each based on the Taylor series, but 
differing by the number of terms of the series considered. The simplest of these 
is the second-order Runga-Kutta method, which takes on one more term than the 
Euler method: 
 

30

2

000 )(
!2

)()()( Rtxhtxhtxhtx +++=+ &&&  
 
We now use the first order approximation to compute the second derivative as: 
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Substituting this in the first equation, we get: 
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The resulting algorithm for the second order Runga-Kutta method is therefore as 
follows: 
 
Start with the initial value, )( 0tx . 
 
Evaluate )()()( 000 tButAxtx +=&  
 
Compute )()()(ˆ 0001 txhtxhtx &+=+  
 
Evaluate )()(ˆ)(ˆ

00101 htBuhtxAhtx +++=+&  
 

Compute )](ˆ)([
2

)()(ˆ 010002 htxtxhtxhtx +++=+ &&  

 
Set t0 = (t0+h) and go back to step 1. 
 
The most popular algorithm is the fourth order Runga-Kutta method, which uses 
two more terms of the Taylor series expansion to obtain a more accurate 
estimation.  
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You would have noted that the Taylor series also gives an estimated upper 
bound of the error. This is used to implement a dynamic step length adjustment 
algorithm, whereby the step length is halved if the estimate of the error exceeds 
a design value, and is doubled if it falls below a specified lower limit. The 
doubling of the step length is used to reduce computation effort and to reduce 
numerical round-off errors. In practice, we need to trade-off between the two 
types of errors to get a best estimate. 
 
One major advantage of numerical methods is that it is not limited to linear 
systems. Even though we implicitly assumed the system to be linear, by 
considering the system equation to be  
 
 BuAxx +=& ; 
 
this is not necessary. We could evaluate the derivative of x using any linear or 
non-linear expression: 
 
 ),( uxfx =& . 
 
and the algorithm would still work. 
 
The formula for the fourth order Runga-Kutta method is as follows: 
 

)())()
2

(4)((
6

)()( 5hOhtfhtftfhtxtx ++++++=+τ  

 
Predictor-Corrector Methods 
  
The Predictor-Corrector is another popular family of algorithms for the numerical 
solution of ordinary differential equations. As the name implies, these are a family 
of itterative techniques, where you first predict the next step and then correct it 
using the new estimates. 
 
We will introduce the general philosophy of predictor-corrector methods through 
a simple example. Consider the first order equation: 
 

00 )()),(()( xtxvalueinitialwithttxftx ==&  
 
Let us define 
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Using Simpson’s rule, we can write 
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)()4(
3

5
1111 hOxxxhxx nnnnn ++++= +−−+ &&&  

But from the defining state equations, we have: 
 

)))1((,( 011 hntxfx nn ++= ++&  
 
These two equations are solved itteratvely as predictor and corrector equations. 
However, to start the operation, we need an initial estimate of xn+1. Milne’s 
formula: 

)()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&&  

may be used to obtain an initial value for xn+1 provided we have estimates for 
three previous values. Runga-Kutta method may be used to start the algorithm. 
The complete algorithm then is as follows: 
 
Starting with x0 at to, find x1 , x2 and x3 at (t+h) and (t+2h) using the Runga Kutta 
algorithm. 
 
Calculate 321 , xandxx &&&  using )))1((,( 011 hntxfx nn ++= ++&  
 

Use Milne’s formula )()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&& to obtain a 

starting value for x4 
 
Use the predictor-corrector pair of equations to refine the value of x4 
 
Use Milne’s formula to obtain a starting value for the next step, refine using the 
predictor-corrector formulae, and repeat. 

Finite difference and finite element methods 
Ordinary differential equations (the type of equations we have encountered so far 
in circuit analysis and systems modelling) can be solved by transforming them 
into difference equations as follows: 
 

),( txfx =&  
 
is replaced by 
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where ),( tx ∆∆ are the steps in the itteration process. This can be seen as a 
rather primitive version of the sophisticated algorithms such as Runga-Kutta that 
we have been studying, which only take into account first order terms. 
Neverthiless, it is a very efficient methos for the solution of ordinary differential 
equations. 
 
When more than one independent variable is involved, we get partial differential 
equations (PDE) and the corresponding method is the finite element method. 
 
Typically, we encounter PDEs in problems associated with electromagnetic 
waves where the three space variables and time are all independent variables. 
PDEs also arise in other branches of engineering, in fluid flow, heat transfer and 
stree analysis, for example. 
 
A treatment of the FEM will not be attempted here. 

2.3.3 Networks with sparse matrices 
 
Sparse matrices are generated in many engineering (and other) applications.  
 
We will consider a few examples from arising from the formulation of circuit 
equations. Consider a circuit with four nodes as shown: 
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Writing the node equations with respect to the ground (node 0), we have: 
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This can be written as: 
iGv =  
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Note that G is symmetric, and that the diagonal is probably dominant 
 
Note also that this is not, sparse; it is in fact a full matrix.  
 
Now let us look at a network formed by cascading two of these (except for the 
current source) as follows: 
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This has six nodes (including the reference node) and so five nodal equations, 
with 25 possible entries. However, we note that: 
 
Node 1 is connected to only 2 other nodes, 
Node 2 is connected to only 2 other nodes, 
Node 3 is connected to only 4 other nodes, 
Node 4 is connected to only 2 other nodes, 
Node 5 is connected to only 2 other nodes, 
so that the non-zero elements of the new conductance matrix are as indicated 
below: 























***
***
*****

***
***

 

 
There are eight zero elements. Out of a total of 25. If we had another of the 
original networks connected in cascade, to give a 7 x 7 conductance matrix, we 
would have the following pattern: 
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***
***
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There are only twenty-five non-zero elements, out of a possible total of 49, that is 
the matrix is almost half empty. This of course is a particular example, but in 
general, as the size of the network increases, its sparsity also increases in most 
practical cases. 
 
We define the sparsity of a matrix as the ratio between the number of zero 
elements and the total number of elements. In the last case, we have a sparsity 
of 24/49 = 0.49 or 49 %. 
 
MATLAB has a number of demonstration matrices taken from real-life situations. 
The “west0479” is a matrix describing connections in a model of a diffusion 
column in a chemical plant. It is 479 x 479 and has 1887 non-zero elements. 
 
The following instructions will load this matrix and set matrix A equal to it: 
 
load west0479 
A=west0479 
 
We can examine its size and the number of non-zero elements using: 
 
size(A) 

ans = 
 
     479   479 
 
nnz(A) 

ans = 
 

       1887 
Thus, the sparsity of this matrix is  
 

%100*
479*479

)1887479*479( −
 

 
Using MATLAB, we can obtain this as: 
 
Per_cent_sparsity = 100*(prod(size(A))-nnz(A))/prod(size(A)) 
 
Per_cent_sparsity = 

 
   99.1776 

 
We can also obtain a plot of the positions where there are non-zero entries, 
similar to what we saw with the example network by using the MATLAB 
command “spy”: 
 
spy(A) 
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Reordering for conservation of sparsity 
 
We have already looked at pivoting for reducing round-off errors, when 
considering Gaussian elimination. In addition to ensuring that the diagonal 
element be non-zero (a zero diagonal element will lead to a breakdown of the 
process), it is better that it be comparatively large, as this would reduce 
computational errors. 
 
We will now look at the special case of sparse matrices, where it is desirable to 
maintain sparsity during he process of factorisation. 
 
We saw that the processing of the sparse matrix considered in LU factorisation 
did not result in adding new non-zero elements. This is not always so. We will 
consider a slightly modified matrix to illustrate this point. 
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−−−−−
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−−
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5220100
2520000
22112201
0025200
10221122
0000252
0010225

 

 
The non-zero elements of this matrix is shown below: 
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nz = 29  
The non-zero elements of the matrix after LU factorisation (both lower and upper 
triangles entered on one matrix, with implied unity elements on the diagonal) 
obtained using MATLAB is as shown: 
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nz = 33  
Note that there are four additional non-zero elements, which have arisen as a 
result of the factorisation.  
 
We need to look at the possibility of reducing the addition of new elements, by 
proper ordering of the equations. MATLAB has two important reordering 
schemes: 
 
Reverse-Cuthill-McKee reordering scheme 
Symmetric Minimum Degree scheme 
They are described as follows: 

SYMRCM Symmetric reverse Cuthill-McKee permutation.  

p = SYMRCM(S) returns a permutation vector p such that S(p,p) tends to have its diagonal elements 
closer to the diagonal than S. This is a good preordering for LU or Cholesky factorization of 
matrices that come from "long, skinny" problems.  It works for both symmetric and asymmetric S. 

SYMMMD Symmetric minimum degree permutation.  
 
p = SYMMMD(S), for a symmetric positive definite matrix S, returns the permutation vector p such 
that S(p,p) tends to have a sparser Cholesky factor than S. Sometimes SYMMMD works well for 
symmetric indefinite matrices too. 
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They both give “better” results with the LU factorisation than the original, in that 
the number of non-zero elements introduced is reduced. 
 
However, the most obvious and the simplest reordering scheme is to order the 
rows (and columns) in increasing number of non-zero elements. In this particular 
case, it yields the order: 
 
2     4     6     1     7     3     5 
 
When the rows and columns are reordered in this manner (so that the diagonal 
elements remain as diagonal elements), the new matrix is: 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
    -1     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
We will compare these three reordering schemes, with respect to our example. 
 
» p=symrcm(A) 
 
p = 
 
     2     1     7     6     3     5     4 
 
» q=symmmd(A) 
 
q = 
 
     4     1     2     6     7     3     5 
 
» r 
 
r = 
 
     2     4     6     1     7     3     5 
 
» A1=A(p,p) 
 
A1 = 
 
     5    -2     0     0    -2     0     0 
    -2     5     0     0    -2    -1     0 
     0     0     5    -2    -1    -2     0 
     0     0    -2     5     0    -2     0 
    -2    -2    -1     0    11    -2    -2 
     0    -1    -2    -2    -2    11    -2 
     0     0     0     0    -2    -2     5 
 
» A2=A(q,q) 
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A2 = 
 
     5     0     0     0     0    -2    -2 
     0     5    -2     0     0    -2    -1 
     0    -2     5     0     0    -2     0 
     0     0     0     5    -2     0    -2 
     0     0     0    -2     5    -1    -2 
    -2    -2    -2     0    -1    11    -2 
    -2    -1     0    -2    -2    -2    11 
 
» A3=A(r,r) 
 
A3 = 
 
     5     0     0    -2     0    -2     0 
     0     5     0     0     0    -2    -2 
     0     0     5     0    -2     0    -2 
    -2     0     0     5     0    -2    -1 
     0     0    -2     0     5    -1    -2 
    -2    -2     0    -2    -1    11    -2 
     0    -2    -2    -1    -2    -2    11 
 
» nnz(A) 
 
ans = 
 
    29 
 
» nnz(lu(A)) 
 
ans = 
 
    33 
 
» nnz(lu(A1)) 
 
ans = 
 
    31 
 
» nnz(lu(A2)) 
 
ans = 
 
    31 
 
» nnz(lu(A3)) 
 
ans = 
 
    29 
 
The fact that the simple rank-order reordering is the best in this case (as it does 
not introduce any new non-zero) elements does not mean that it is always the 
best. It is very much dependant on the structure of the matrix under 
consideration. 
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Intuitively, a better scheme would be to reorder the balance equations after each 
row is processed, in the order of the freshly computed rank order. This is much 
more time consuming, but would be justified if the factored matrix is to be 
repeatedly used with new vectors (b), as is the case with (say) power system 
load flow studies. A still better algorithm is to allow for the fact that some of the 
original non-zero elements may actually vanish during processing due to 
cancellation, and to determine the rank order at each stage, taking into account 
such cancellations. This is even more time consuming than the previous method, 
but may be justified under special circumstances, such as in repeated on-line 
transient analysis. 
  

Sparsity programming 
 
The efficient storage and retrieval of sparse matrices need special programming 
techniques, if we are to exploit their sparsity. We can reduce both storage and 
computational requirements for the processing of such matrices by proper choice 
of techniques. Some reservations have been expressed in recent times about 
some of the traditional methods used, on account of the relative burdens of 
computation and access times of modern personal computers. It has also been 
pointed out that storage is now comparatively cheap. However, along with the 
advancement of technology that has brought cheap mass storage, the 
dimensions of the problems that need to be tackled has also increased. 
Therefore, there is a continuing need for good and efficient programming 
methods for the handling of very large sparse matrices. 
 
MATLAB has a special collection of routines for handling sparse matrices. We 
have already used some of them, without bothering about how such matrices are 
stored. 
 
Let us consider our continuing example. 
 
» A 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
    -1     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
» sparse(A) 
 
ans = 
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   (1,1)        5 
   (2,1)       -2 
   (3,1)       -2 
   (5,1)       -1 
   (1,2)       -2 
   (2,2)        5 
   (3,2)       -2 
   (1,3)       -2 
   (2,3)       -2 
   (3,3)       11 
   (4,3)       -2 
   (5,3)       -2 
   (7,3)       -1 
   (3,4)       -2 
   (4,4)        5 
   (5,4)       -2 
   (1,5)       -1 
   (3,5)       -2 
   (4,5)       -2 
   (5,5)       11 
   (6,5)       -2 
   (7,5)       -2 
   (5,6)       -2 
   (6,6)        5 
   (7,6)       -2 
   (3,7)       -1 
   (5,7)       -2 
   (6,7)       -2 
   (7,7)        5 
 
The instruction sparse (A) has converted the storage of the matrix A from its 
normal form into the sparse matrix representation in MATLAB. As can be seen, 
this representation uses two integer arrays to indicate the indices of each non-
zero element and another real (or complex) array to represent the value of each 
element. In the case of this example, it is obviously not an efficient mode of 
storage, for we have used a total of (3*29 = 87) locations to store 49 (including 
zero) elements. However, it comes to its own as the size of the matrix and the 
sparsity increases, as in the case of the test matrix presented earlier. 
 
We will now consider a slightly more sophisticated mode of representation 
related to this same method, which allows for the fact that the diagonal element 
of most matrices of practical interest would be non-zero, and also facilitates easy 
reordering. 
 
The first column gives the values of the diagonal elements, in order, as at the 
beginning. The second and the third columns give the row ordering scheme, and 
at the start, it is simply 1, 2,3 etc. We will later see why we need two columns. 
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5 1 1 2 -2 P1

5 2 2 1 -2 P2

11 3 3 1 -2 P3

5 4 4 3 -2 P4

11 5 5 1 -1 P5

5 6 6 5 -2 P6

5 7 7 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

 
The next set of three columns give the first non-zero off-diagonal element in each 
row as a combination of three values The first of these give the column index, the 
second gives the element value and the third is a pointer to the location of the 
next non-zero element in the row. The pointer will be set to zero if there are no 
more non-zero values. 
 

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

3 -2 P

3 -2 0

2 -2 P

5 -2 0

3 -2 P

7 -2 0

5 -2 P

5 -1 0

4 -2 P

4 -2 P

6 -2 0

5 -2 P

6 -2 P

7 -1 0

7 -2 0

P1

P2

P3

P4

P5

P6

P7

  
If we now reorder the equations according to (say) the pattern r discussed earlier, 
we will not move any of the values other than the pointers and reverse pointers 
on the second and third columns: 
 
r = 2  4  6  1  7  3  5 
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5 4 2 2 -2 P1

5 1 4 1 -2 P2

11 6 6 1 -2 P3

5 2 1 3 -2 P4

11 7 7 1 -1 P5

5 3 3 5 -2 P6

5 5 5 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

 
The original matrix and the reordered matrix are as follows: 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
     0     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
>> r=[2 4 6 1 7 3 5] 
 
r = 
 
     2     4     6     1     7     3     5 
 
>> A1=A(r,r) 
 
A1 = 
 
     5     0     0    -2     0    -2     0 
     0     5     0     0     0    -2    -2 
     0     0     5     0    -2     0    -2 
    -2     0     0     5     0    -2    -1 
     0     0    -2     0     5    -1    -2 
    -2    -2     0    -2    -1    11    -2 
     0    -2    -2     0    -2    -2    11 
 
Follow the pointers and work out how the indices help you to interpret the entroes 
after reordering. 


