
94 A systems approach to circuits, measurements and control

2.3 Solution of network equations

Introduction

Sparse matrices are an important phenomenon in engineering. They occur
regularly in network problems, and so, special methods used in their solution are
of importance to us.

Let us consider a simple network with three nodes (that is, two node pairs) with
each node connected to the other two. If we write the nodal equations, we will
have

 YV = I

Where Y is a 2 x 2 admittance matrix and V and I are 2 x 1 vectors. All elements
of Y will be full (or have a non-zero entry.) However, if we take a circuit with ten
nodes, with each node connected to three others, we will have a 9 x 9
admittance matrix with only a maximum of 36 non-zero elements, out of a total of
81. With a large network of (say) 1000 x 1000, it is possible to have less than
5000 non-zero elements, out of a total of one Million entries. This is one instance
of how sparse matrices arise.

Common methods of solving matrix equations are quite inefficient in dealing with
sparse matrices, and special methods are in use, which exploit their special
features

We will first examine the most obvious solution of the equation we considered
earlier:

 YV=I
 V = Y-1 I

where Y-1 is the inverse of Y. Matrix inversion is computationally very inefficient,
even for a full matrix, for we have to evaluate the co-factor of each element of the
matrix. This means that a (n-1) x (n-1) determinant has to be evaluated for each
of the n2 elements of the matrix, that is a total of (n-1)n! multiplications..

We will then look at Gaussian elimination as an algorithm for the solution of a
matrix equation. We will also look at how equation ordering affects the accuracy
of the solution.

Finally, we will look at LU factorisation and Cholesky factorisation

Chapter 2 – State and state space 95

We have already examined the role of equation reordering and pivoting as a
means of improving the accuracy of computation. When considering sparse
matrices, we also need to be concerned about the need to conserve sparsity in
the solution process, We have seen how inversion tends to almost completely fill
up an originally sparse matrix, and that both Gaussian elimination and LU
factorisation sometimes introduce new non-zero elements.

If we are interested in sparsity (as a means of reducing both storage
requirements and computation time), we should consider special reordering
schemes directed towards conserving sparsity. There are a variety of such
schemes, each with its own merits and demerits. Some are very simple, and can
be implemented with minimum time and effort, but are not very effective. They
can be used when we are interested in only one run of the solution of a set of
equations. More complex methods require relatively more effort, and can be
justified when we have to resort to repeated runs.

A reordering scheme for sparse matrices to be useful will have to incorporate
reordering techniques for both reduction of round off errors and for the
preservation of sparsity.

Finally, we examine how a sparse matrix can be stored, so as to exploit its
special features. In particular, we need to develop techniques of storage and
retrieval that will reduce the total storage requirements while facilitating quick and
easy data access –that is both writing and reading. These methods are together
known as sparsity programming

2.3.1 Solution of linear state equations through
Laplace transformation

Let us consider the system of state space equations:

BuAxx +=&

Laplace transformation of these yields:

),()()0()(sBUsAXxssX +=−
where

=

=

=

)(
.
.

).(
)(

)(,

)0(
.
.

)0(
)0(

)0(;

)(
.
.

)(
)(

)(
2

1

2

1

2

1

sU

sU
sU

sU

x

x
x

x

sX

sX
sX

sX

nnn

96 A systems approach to circuits, measurements and control

{ } { })()()0()()(
)()()0()()(.,

)()0()()(

1111

11

sBUAsILxAsILtx
sBUAsIxAsIsXie

sBUxsXAsI

−−−−

−−

−+−=∴

−+−=

+=−∴

The solution consists of two parts:

• { })0()(11 xAsIL −− − , which is the contribution made by the initial

conditions. This is a transient, but it is not the complete transient.

• { })()(11 sBUAsIL −− − , which is the contribution made by the inputs to
the system.

This contribution consists of two parts itself, a transient term and a steady state
term. Both these contain the term 1)(−− AsI .
Now,

AsI
AsIadjAsI

−
−

== −)()(1

AsI − is a polynomial in s, of degree n.

Each element in)(AsIadj − is a polynomial in s, of degree (n-1) or less.

Each element of
AsI
AsIadj

−
−)(

 can be split up into partial fractions of the form:

n

n

s
b

s
b

s
b

λλλ −
++

−
+

−
...

2

21

1

if the roots of 0=− AsI are distinct, or

1

1
2

1

1

1
)(

...
)(

...
+−

−++

−
++

−
++

−
+

−
++

− qn

n
q

p

qp

p

p

p

p

s
b

s
b

s
b

s
b

s
b

λλλλλ

if there is one root of multiplicity q.

These λ’s are the eigen-values of the system, and 0=− AsI is the
characteristic equation of the system. The eigen-values are the roots of the
characteristic equation. AsI − is known as the characteristic polynomial. The
eigen-values may be either real, or they occur in complex conjugate pairs.

Chapter 2 – State and state space 97

Example:

=

=

=

−
−

−
=

)(
)(

;
1
0
1

)0(

,
10
00
01

,
100
011
101

tH
tH

Ux

BA

+
+−

−
=−

100
011
001

s
s

s
AsI

2)1)(1(+−=− ssAsI

[]
AsI
AsIadjAsI

−
−

=− −)(1

−

−−+

+−+

+−
=

100
111

)1(0)1(

)1)(1(
1

2

2

2

2

s
ss

ss

ss

+

+

+−
−

−

−
−

−

=

1
1

)1)(1(
1

1
1

1
1

1
1

22

2

s

sss

ss

+

+−
−

−

−
−

−

)1(
1

)1)(1(
1

)1(
1

)1(
1

)1(
1

22

2

ss

sssss

ssss

98 A systems approach to circuits, measurements and control

+

+−
−

+−

−
−

−

=

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

s

ssss

ss

The Laplace transform of the response due to the initial conditions =
)0()(1xAsI −−

+

+−
−

−

−
−

−

=

+

+−
−

+−

−
−

−

=

1
1

)1)(1(
1

1
1

1
1

1
1

1

0

1

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

22

2

s

sss

ss

s

ssss

ss

The Laplace transform of the response due to the input =

)()(1 sBUAsI −−

+

+−
−

+−

−
−

−

=

s

s

s

ssss

ss

1

1

10

00

01

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

+

+−
−

−

−
−

−

=

+

+−
−

+−

−
−

−

=

)1(
1

)1)(1(
1

)1(
1

)1(
1

)1(
1

1
0

1

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

22

2

ss

sssss

ssss

s

s

s

ssss

ss

Then, the transform of the total response
= The transform of the response due to initial conditions
+ The transform of the response due to the input.

Chapter 2 – State and state space 99

=

+
−

−

+
+

−

s

ss

ss

1
)1(2

1
)1(2

1
1

1
1

1

In the time domain, the response =

+
−

−

+
+

−
−

s

ss

ss

L

1
)1(2

1
)1(2

1
1

1
1

1

1 =)(

1

)(
2
1 tHee

ee

tt

tt

−

+

−

−

2.3.2 Solution of transient equations

We have studied about the methods for the solution of linear algebraic equations
that arise in the steady state solution of networks. We will now look at how
differential equations describing the transient behaviour of networks may be
handled.

Earlier, we studied about the dynamic representation of networks, through the
formulation of state space equations. Our treatment of electrical circuits was
limited to time-invariant systems, in that we assumed that parameters such as
the resistance, inductance or capacitance of an element were not functions of
time. We will continue with this assumption, and restrict our treatment to time-
invariant systems.

Analytical methods for the solution of systems of differential equations exist only
for a limited class of simple, linear equations. For the study of more complex and
non-linear systems, we need to convert the differential equations to difference
equations, and then apply numerical techniques for their solution. We will study
analytical methods for the solution of systems of differential equations and also
some numerical techniques for the solution of systems of difference equations.

100 A systems approach to circuits, measurements and control

Analytical solution of linear state equations

We have already noted the relationship between the state space representation
and the s-plane representation of a system. One approach to the solution of state
equations is through its Laplace transform.

Another approach would be through the evaluation of the matrix exponential.

As is to be expected, both these solutions are strongly influenced by the eigen-
values of the system.

Numerical solution of state equations: Solution of linear state
equations through the matrix exponential

We have seen that the solution to

BuAxx +=& is

{ } { })()()0()()(1111 sBUAsILxAsILtx −−−− −+−=

Let { })()(11 tAsIL Φ=− −−

Therefore, (by the convolution theorem):

∫ −Φ+Φ=
t

dButxttx
0

)()()0()()(τττ

We now need to evaluate Φ(t).

We will assume a power series solution for the homogeneous equation Axx =& ,
of the form:

....)(2
210 +++= tataatx

This gives:

.)..(

...32)(
2

210

2
321

+++==

+++=

tataaAAx
tataatx&

Equating coefficients of powers of t, we have:

Chapter 2 – State and state space 101

0

0
3

0
2

23

0
2

012

01

!
1

.

.
3.2

1
2
1

3
1

3
1

2
1

2
1

2
1

aA
r

a

aAaAAAaa

aAAaAAaa

Aaa

r
r =

===

===

=

We also have, by substitution t=0 in our power series,

a0 = x(0)

This gives us the solution:

)0(

)0(.]...
!3

1
!2

1[)(3322

xe

xtAtAAtItx

At=

++++=

The solution of the complete equation

BuAxx +=& is:

ττ

ττ

τττ

τ

τ

dBueexe

dBuexe

dButxttx

t AAtAt

t tAAt

t

)()0(

)()0(

)()()0()()(

0

0

)(

0

∫
∫
∫

−

−

+=

+=

−Φ+Φ=

Matrix inversion

We will consider the following equation, which we have already encountered:

=

++−−
−++−
−−++

0
0

3

2

1

65446

44322

62621 si

v
v
v

GGGGG
GGGGG
GGGGG

Let us assume some numerical values for each Gi and for is.
G1 = g3 = G5 = 1,
G2 = G4 = G6 = 2,
Is=1

102 A systems approach to circuits, measurements and control

Then the equations would be:

=

−−
−−
−−

0
0
1

522
252
225

3

2

1

v
v
v

To compute the inverse of this matrix, we need to first compute its determinant:

∆ = 5(25-4) + 2(-10-4)-2(4+10) = 49

We then have to compute the co-factor of each element ∆ij to obtain:

=

=

−−−−+
−−−−−−−

+−−−−
=−

4286.02857.02857.0
2857.04286.02857.0
2857.02857.04286.0

211414
142114
141421

49
1

)425()410()104(
)410()425()410(

)104()410()425(

49
11G

Now, writing

 V=G-1 I,
We have:

=

2857.0
2857.0
4286.0

2

1

v
v
v

We can use MATLAB to obtain this result using:

G=[5 -2 -2;-2 5 -2;-2 -2 5]

G =

 5 -2 -2
 -2 5 -2
 -2 -2 5

Chapter 2 – State and state space 103

is=[1;0;0]

is =

 1
 0
 0

v=inv(G)*is

v =

 0.4286
 0.2857
 0.2857

We can use the “spy” instruction to plot the non-zero elements of G:

Spy(G)

and of G-1:

Spy(inv(G))

They are both full matrices and nothing (in terms of storage etc.) is gained or lost.

Now lets look at the next example we considered, of three such networks
connected in cascade. The non-zero elements of the original matrix and of its
inverse are as shown:

104 A systems approach to circuits, measurements and control

−−
−−
−−−−

−−
−−−−

−−
−−

=

522
252
221022

252
221022

252
225

G

G=[5 -2 -2 0 0 0 0;-2 5 -2 0 0 0 0;
-2 -2 10 -2 -2 0 0;0 0 -2 5 -2 0 0;
0 0 -2 -2 10 -2 -2;0 0 0 0 -2 5 -2;
0 0 0 0 -2 -2 5]

G =

 5 -2 -2 0 0 0 0
 -2 5 -2 0 0 0 0
 -2 -2 10 -2 -2 0 0
 0 0 -2 5 -2 0 0
 0 0 -2 -2 10 -2 -2
 0 0 0 0 -2 5 -2
 0 0 0 0 -2 -2 5

>> spy(G)

>> spy(inv(G))

Chapter 2 – State and state space 105

>> inv(G)

ans =

 Columns 1 through 5

 0.3214 0.1786 0.1250 0.0714 0.0536
 0.1786 0.3214 0.1250 0.0714 0.0536
 0.1250 0.1250 0.1875 0.1071 0.0804
 0.0714 0.0714 0.1071 0.2857 0.1071
 0.0536 0.0536 0.0804 0.1071 0.1875
 0.0357 0.0357 0.0536 0.0714 0.1250
 0.0357 0.0357 0.0536 0.0714 0.1250

 Columns 6 through 7

 0.0357 0.0357
 0.0357 0.0357
 0.0536 0.0536
 0.0714 0.0714
 0.1250 0.1250
 0.3214 0.1786

0.1786 0.3214
0.1787

>> nnz(G)

ans =

 25

>> nnz(inv(G))

ans =

 49

We see that the original matrix had only 25 non-zero elements while the inverse
has 49 non-zero elements, and is full.

106 A systems approach to circuits, measurements and control

Gaussian elimination

We will study this algorithm through the example we have been considering:

=

−−
−−
−−

0
0
1

522
252
225

3

2

1

v
v
v

Step 1: Divide the first row by its diagonal element:

=

−−
−−
−−

0
0

5/1

522
252

5/25/21

3

2

1

v
v
v

Eliminate v1 from the other equations by subtracting the relevant multiples of
equation 1 from the others:

=

−−−
−−−

−−

5/2
5/2
5/1

5/455/420
5/425/450

5/25/21

3

2

1

v
v
v

We now repeat the process with the second row, that is first, make the diagonal
element unity, then eliminate the second variable from the third equation:

=

−
−
−−

5/2
21/2
5/1

5/215/140
3/210
5/25/21

3

2

1

v
v
v

+
=

−
−
−−

)21/2)(5/14(5/2
21/2
5/1

)3/2)(5/14(5/2100
3/210
5/25/21

3

2

1

v
v
v

Simplifying:

=

−
−−

3/2
21/2
5/1

3/700
3/210
5/25/21

3

2

1

v
v
v

Now, normalising the last equation, we have:

=

−
−−

7/2
21/2
5/1

100
3/210
5/25/21

3

2

1

v
v
v

Chapter 2 – State and state space 107

This gives the results as:

V3= 2/7
V2=2/21+2/3 V3 = 2/21+ 4/21 =2/7
V1= 1/5+2/5 V2 + 2/5 V3 = 1/5 +8/35 = 3/7

We are now in a position to attempt to write down the general algorithm.
Consider the (n x n) matrix A and (n x 1) vectors x and b, where x is the
unknown.

Anxnxnx1 = bnx1

Our strategy is to eliminate x1 from all the (n-1) equations, other than the first. To
do this, we first divide the first equation throughout by a11, so that the revised a11
is equal to 1.

 For i = 1 to n:

a1i = a1i / a11
 b1 = b1 / a11

Then, for each of the rows 2 to n, we subtract ai1 times the first row from each
term, in other words:

 For i = 2 to n:

 bi = bi - ai1 x b1

 For j = 1 to n:

 aij = aij – ai1 x a1j

This would mean that x1 is eliminated from all but the first equation, so that we
are left with (n-1) equations in (n-1) unknowns. We can then repeat the same
algorithm for the new (n – 1) x ((n – 1) matrix. Finally, we will be left with only one
equation, corresponding to the last variable xn:

 xn = bn

The rest of the algorithm consists of the back-substitution process, whereby xn-1
is calculated using the known value of xn, and then xn-2 is calculated, and so on
until we obtain all values up to x1.

 x n-1 = b n-1 – a n-1,n x n

For the general case:

1.,..,.2,1,
1

−−=−= ∑
+=

nnixabx
n

ij
jijii

108 A systems approach to circuits, measurements and control

This algorithm suffers from the disadvantage that the solution has to be repeated
from the very beginning even when the matrix A has not changed at all, but only
the vector b has changed. We can overcome this difficulty by actually not
carrying out the operations on b during the forward reduction, but keeping a
record of the necessary operations. This philosophy has lead to the development
of algorithms such as the LU factorisation.

The other main problem is that of ill-conditioned or badly ordered matrices.

Re-ordering the equations (row pivoting) or the variables (column pivoting) can
help to resolve problems with bad ordering.

LU Factorisation

We will consider the same example as before:

=

−−
−−
−−

0
0
1

522
252
225

3

2

1

v
v
v

We would wish to be able to avoid some of the disadvantages of Gaussian
elimination, in particular, the necessity to re-do all the computations in case of
having to estimate [v] for a different [i], A remaining the same.

Let us assume that we van find two matrices L and U such that:

L*U = A

L and U being lower triangular and upper triangular, respectively. Then, it would
be easy to compute x satisfying:

 L*U*x = b

in two steps. First we find y such that:

 L*y = b

Then, x such that:

 U*x = y

For the example chosen:

Chapter 2 – State and state space 109

=

−−
−−
−−

33

2322

131211

3231

21

00
0

1
01
001

522
252
225

u

uu

uuu

ll

l

+++
++=

3323321331223212311131

2313212212211121

131211

uululululul
uuluulul

uuu

We can now write down each of these terms, almost by inspection:

2
2

5

13

12

11

−=
−=

=

u
u
u

5/145/422
5/215/455

5/22

23231321

22221221

211121

−=−−=⇒−=+
=−=⇒=+

−=⇒−=

uuul
uuul

lul

3/75
3/22

5/22

333323321331

3222321231

311131

=⇒=++
−=⇒−=+

−=⇒−=

uuulul
lulul

lul

We have now completed the computation of the factored form:

−
−−

=

−−
−=

3/700
5/145/210

225

13/25/2
015/2
001

U

L

110 A systems approach to circuits, measurements and control

We can check whether the factorisation is correct by multiplying L by U using
MATLAB:

L=[1 0 0;-2/5 1 0;-2/5 -2/3 1];
U=[5 -2 -2;0 21/5 -14/5;0 0 7/3];
A=L*U
A =

 5.0000 -2.0000 -2.0000
 -2.0000 5.0000 -2.0000
 -2.0000 -2.0000 5.0000

We can also use MATLAB to perform the LU factorisation:

[L,U]=lu(A)

L =

 1.0000 0 0
 -0.4000 1.0000 0
 -0.4000 -0.6667 1.0000

U =

 5.0000 -2.0000 -2.0000
 0 4.2000 -2.8000
 0 0 2.3333

When we need to optimise the use of storage, it is possible to store all the values
in one matrix, as it is not necessary to store either the zeros or the 1s. There is
also a distinct MATLAM command for this:

lu(A)

ans =

 5.0000 -2.0000 -2.0000
 0.4000 4.2000 -2.8000
 0.4000 0.6667 2.3333

Let us now see the effect of LU factorisation on a sparse matrix.
We will again use the example we considered earlier.

A =

 5 -2 -2 0 0 0 0
 -2 5 -2 0 0 0 0
 -2 -2 10 -2 -2 0 0
 0 0 -2 5 -2 0 0
 0 0 -2 -2 10 -2 -2
 0 0 0 0 -2 5 -2
 0 0 0 0 -2 -2 5

Chapter 2 – State and state space 111

spy(A)

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 25
» [L,U]=lu(A)

L =

 1.0000 0 0 0 0 0 0
 -0.4000 1.0000 0 0 0 0 0
 -0.4000 -0.6667 1.0000 0 0 0 0
 0 0 -0.2727 1.0000 0 0 0
 0 0 -0.2727 -0.5714 1.0000 0 0
 0 0 0 0 -0.2500 1.0000 0
 0 0 0 0 -0.2500 -0.5556 1.0000

U =

 5.0000 -2.0000 -2.0000 0 0 0 0
 0 4.2000 -2.8000 0 0 0 0
 0 0 7.3333 -2.0000 -2.0000 0 0
 0 0 0 4.4545 -2.5455 0 0
 0 0 0 0 8.0000 -2.0000 -2.0000
 0 0 0 0 0 4.5000 -2.5000
 0 0 0 0 0 0 3.1111

spy(L)

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 16
spy(U)

112 A systems approach to circuits, measurements and control

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 16
spy(lu(A))

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 25

Notice that in this particular case, there has been no increase in storage
requirements. This is only if we use one matrix to store both lower and upper
triangles, with implied storage of zero and unity values.

This is not always the case, and some non-zero elements may be introduced
during factorisation.

Compare this with the result we obtained with inversion, where the reslting matrix
was a full matrix.

spy(inv(A))

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 49

Chapter 2 – State and state space 113

Cholesky factorisation

Unlike the LU factorisation, this works only for symmetric positive definite
matrices. Similar to the procedure we adopted for the computation of the LU
factorisation, we can start with the expected result to obtain the factorisation
algorithm.

The Cholesky factorisation of a symmetric positive definite matrix A produces two
factors such that:

A = C’ * C

We will use the MATLAB command to obtain the factors of the matrix we
considered earlier:

» A=[5 -2 -2 0 -1 0 0;
-2 5 -2 0 0 0 0;
-2 -2 11 -2 -2 0 -1;
0 0 -2 5 -2 0 0;
-1 0 -2 -2 11 -2 -2;
0 0 0 0 -2 5 -2;
0 0 -1 0 -2 -2 5]

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 -1 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

» C=chol(A)

C =

 2.2361 -0.8944 -0.8944 0 -0.4472 0 0
 0 2.0494 -1.3663 0 -0.1952 0 0
 0 0 2.8868 -0.6928 -0.9238 0 -0.3464
 0 0 0 2.1260 -1.2418 0 -0.1129
 0 0 0 0 2.8925 -0.6914 -0.8505
 0 0 0 0 0 2.1265 -1.2171
 0 0 0 0 0 0 1.6317

» transpose(C)*C

ans =

 5.0000 -2.0000 -2.0000 0 -1.0000 0 0
 -2.0000 5.0000 -2.0000 0 0 0 0
 -2.0000 -2.0000 11.0000 -2.0000 -2.0000 0 -1.0000
 0 0 -2.0000 5.0000 -2.0000 0 0
 -1.0000 0 -2.0000 -2.0000 11.0000 -2.0000 -2.0000
 0 0 0 0 -2.0000 5.0000 -2.0000
 0 0 -1.0000 0 -2.0000 -2.0000 5.0000

114 A systems approach to circuits, measurements and control

We will use the MATLAB command nnz to obtain the number of non-zero
elements of A and C:

» nnz(A)

ans =

 29

» nnz(C)

ans =

 20

We will now examine the effect of re-ordering the equations on sparsity. We will
use the reordering algorithm symrcm available in MATLAB. Its description is as
follows:

SYMRCM Symmetric reverse Cuthill-McKee permutation.
 p = SYMRCM(S) returns a permutation vector p such that S(p,p)
 tends to have its diagonal elements closer to the diagonal than S.
 This is a good preordering for LU or Cholesky factorization of
 matrices that come from "long, skinny" problems. It works for
 both symmetric and asymmetric S.

» p=symrcm(A)

p =

 2 1 7 6 3 5 4

» A1=A(p,p)

A1 =

 5 -2 0 0 -2 0 0
 -2 5 0 0 -2 -1 0
 0 0 5 -2 -1 -2 0
 0 0 -2 5 0 -2 0
 -2 -2 -1 0 11 -2 -2
 0 -1 -2 -2 -2 11 -2
 0 0 0 0 -2 -2 5

» chol(A1)

ans =

 2.2361 -0.8944 0 0 -0.8944 0 0
 0 2.0494 0 0 -1.3663 -0.4880 0
 0 0 2.2361 -0.8944 -0.4472 -0.8944 0
 0 0 0 2.0494 -0.1952 -1.3663 0
 0 0 0 0 2.8452 -1.1716 -0.7029
 0 0 0 0 0 2.5928 -1.0890
 0 0 0 0 0 0 1.8221

Chapter 2 – State and state space 115

» C1=chol(A1)

C1 =

 2.2361 -0.8944 0 0 -0.8944 0 0
 0 2.0494 0 0 -1.3663 -0.4880 0
 0 0 2.2361 -0.8944 -0.4472 -0.8944 0
 0 0 0 2.0494 -0.1952 -1.3663 0
 0 0 0 0 2.8452 -1.1716 -0.7029
 0 0 0 0 0 2.5928 -1.0890
 0 0 0 0 0 0 1.8221

» nnz(C1)

ans =

 19

Compare with a different reordering algorithm:

SYMMMD Symmetric minimum degree permutation.
 p = SYMMMD(S), for a symmetric positive definite matrix S,
 returns the permutation vector p such that S(p,p) tends to have a
 sparser Cholesky factor than S. Sometimes SYMMMD works well
 for symmetric indefinite matrices too.

» q=symmmd(A)

q =

 4 1 2 6 7 3 5

» A2=A(q,q)

A2 =

 5 0 0 0 0 -2 -2
 0 5 -2 0 0 -2 -1
 0 -2 5 0 0 -2 0
 0 0 0 5 -2 0 -2
 0 0 0 -2 5 -1 -2
 -2 -2 -2 0 -1 11 -2
 -2 -1 0 -2 -2 -2 11

» C2=chol(A2)

C2 =

 2.2361 0 0 0 0 -0.8944 -0.8944
 0 2.2361 -0.8944 0 0 -0.8944 -0.4472
 0 0 2.0494 0 0 -1.3663 -0.1952
 0 0 0 2.2361 -0.8944 0 -0.8944
 0 0 0 0 2.0494 -0.4880 -1.3663
 0 0 0 0 0 2.7010 -1.5303
 0 0 0 0 0 0 2.2256

116 A systems approach to circuits, measurements and control

» nnz(C2)

ans =

 19

We end up with the same number of non-zero elements after factorisation. We
will now try a very simple reordering algorithm: reorder by rank of non-zero
elements in each row.

» r=[2 4 6 1 7 3 5]

r =

 2 4 6 1 7 3 5

» A3=A(r,r)

A3 =

 5 0 0 -2 0 -2 0
 0 5 0 0 0 -2 -2
 0 0 5 0 -2 0 -2
 -2 0 0 5 0 -2 -1
 0 0 -2 0 5 -1 -2
 -2 -2 0 -2 -1 11 -2
 0 -2 -2 -1 -2 -2 11

» C3=chol(A3)

C3 =

 2.2361 0 0 -0.8944 0 -0.8944 0
 0 2.2361 0 0 0 -0.8944 -0.8944
 0 0 2.2361 0 -0.8944 0 -0.8944
 0 0 0 2.0494 0 -1.3663 -0.4880
 0 0 0 0 2.0494 -0.4880 -1.3663
 0 0 0 0 0 2.7010 -1.5303
 0 0 0 0 0 0 2.2256

» nnz(C3)

ans =

 18

The reordering in terms of the rank order of non-zero elements gives the best
result.

Solution of ordinary differential equations
Circuits containing energy storage elements (capacitors and inductors) give rise
to systems of equations containing derivatives of currents and / or voltages. The
numerical solution of such equations is based on their conversion to difference
equations, using approximate representations.

Chapter 2 – State and state space 117

Runga-Kutta methods

There is a family of Runga-Kutta methods, each based on the Taylor series, but
differing by the number of terms of the series considered. The simplest of these
is the second-order Runga-Kutta method, which takes on one more term than the
Euler method:

30

2

000)(
!2

)()()(Rtxhtxhtxhtx +++=+ &&&

We now use the first order approximation to compute the second derivative as:

h
txhtxtx)()(

)(00
0

&&
&&

−+
≈

Substituting this in the first equation, we get:

2
)()(

)(
)()(

2
)()()(00

0
00

2

000
htxtxhtx

h
txhtxhtxhtxhtx ++

+=
−+

++≈+
&&&&

&

The resulting algorithm for the second order Runga-Kutta method is therefore as
follows:

Start with the initial value,)(0tx .

Evaluate)()()(000 tButAxtx +=&

Compute)()()(ˆ 0001 txhtxhtx &+=+

Evaluate)()(ˆ)(ˆ

00101 htBuhtxAhtx +++=+&

Compute)](ˆ)([
2

)()(ˆ 010002 htxtxhtxhtx +++=+ &&

Set t0 = (t0+h) and go back to step 1.

The most popular algorithm is the fourth order Runga-Kutta method, which uses
two more terms of the Taylor series expansion to obtain a more accurate
estimation.

118 A systems approach to circuits, measurements and control

You would have noted that the Taylor series also gives an estimated upper
bound of the error. This is used to implement a dynamic step length adjustment
algorithm, whereby the step length is halved if the estimate of the error exceeds
a design value, and is doubled if it falls below a specified lower limit. The
doubling of the step length is used to reduce computation effort and to reduce
numerical round-off errors. In practice, we need to trade-off between the two
types of errors to get a best estimate.

One major advantage of numerical methods is that it is not limited to linear
systems. Even though we implicitly assumed the system to be linear, by
considering the system equation to be

 BuAxx +=& ;

this is not necessary. We could evaluate the derivative of x using any linear or
non-linear expression:

),(uxfx =& .

and the algorithm would still work.

The formula for the fourth order Runga-Kutta method is as follows:

)())()
2

(4)((
6

)()(5hOhtfhtftfhtxtx ++++++=+τ

Predictor-Corrector Methods

The Predictor-Corrector is another popular family of algorithms for the numerical
solution of ordinary differential equations. As the name implies, these are a family
of itterative techniques, where you first predict the next step and then correct it
using the new estimates.

We will introduce the general philosophy of predictor-corrector methods through
a simple example. Consider the first order equation:

00)()),(()(xtxvalueinitialwithttxftx ==&

Let us define

))(,()(

)(

00

0

nhtxfnhtxx
nhtxx

nn

n

+=+=
+=

&&

Using Simpson’s rule, we can write

Chapter 2 – State and state space 119

)()4(
3

5
1111 hOxxxhxx nnnnn ++++= +−−+ &&&

But from the defining state equations, we have:

)))1((,(011 hntxfx nn ++= ++&

These two equations are solved itteratvely as predictor and corrector equations.
However, to start the operation, we need an initial estimate of xn+1. Milne’s
formula:

)()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&&

may be used to obtain an initial value for xn+1 provided we have estimates for
three previous values. Runga-Kutta method may be used to start the algorithm.
The complete algorithm then is as follows:

Starting with x0 at to, find x1 , x2 and x3 at (t+h) and (t+2h) using the Runga Kutta
algorithm.

Calculate 321 , xandxx &&& using)))1((,(011 hntxfx nn ++= ++&

Use Milne’s formula)()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&& to obtain a

starting value for x4

Use the predictor-corrector pair of equations to refine the value of x4

Use Milne’s formula to obtain a starting value for the next step, refine using the
predictor-corrector formulae, and repeat.

Finite difference and finite element methods
Ordinary differential equations (the type of equations we have encountered so far
in circuit analysis and systems modelling) can be solved by transforming them
into difference equations as follows:

),(txfx =&

is replaced by

)),
2

(),
2

((ttxxf
t
x ∆

+
∆

+=
∆
∆

120 A systems approach to circuits, measurements and control

where),(tx ∆∆ are the steps in the itteration process. This can be seen as a
rather primitive version of the sophisticated algorithms such as Runga-Kutta that
we have been studying, which only take into account first order terms.
Neverthiless, it is a very efficient methos for the solution of ordinary differential
equations.

When more than one independent variable is involved, we get partial differential
equations (PDE) and the corresponding method is the finite element method.

Typically, we encounter PDEs in problems associated with electromagnetic
waves where the three space variables and time are all independent variables.
PDEs also arise in other branches of engineering, in fluid flow, heat transfer and
stree analysis, for example.

A treatment of the FEM will not be attempted here.

2.3.3 Networks with sparse matrices

Sparse matrices are generated in many engineering (and other) applications.

We will consider a few examples from arising from the formulation of circuit
equations. Consider a circuit with four nodes as shown:

is G1

G2

G3

G4

G5

G6

.

.

.

.

1 2 3

0

Writing the node equations with respect to the ground (node 0), we have:

=

++−−
−++−
−−++

0
0

3

2

1

65446

44322

62621 si

v
v
v

GGGGG
GGGGG
GGGGG

This can be written as:
iGv =

Chapter 2 – State and state space 121

Note that G is symmetric, and that the diagonal is probably dominant

Note also that this is not, sparse; it is in fact a full matrix.

Now let us look at a network formed by cascading two of these (except for the
current source) as follows:

G7

G2

G9

G10

G11

G12

.

.

.

.

4 5

is G1

G2

G3

G4

G5

G6

.

.

.

.

1 2 3

0

This has six nodes (including the reference node) and so five nodal equations,
with 25 possible entries. However, we note that:

Node 1 is connected to only 2 other nodes,
Node 2 is connected to only 2 other nodes,
Node 3 is connected to only 4 other nodes,
Node 4 is connected to only 2 other nodes,
Node 5 is connected to only 2 other nodes,
so that the non-zero elements of the new conductance matrix are as indicated
below:

There are eight zero elements. Out of a total of 25. If we had another of the
original networks connected in cascade, to give a 7 x 7 conductance matrix, we
would have the following pattern:

122 A systems approach to circuits, measurements and control

There are only twenty-five non-zero elements, out of a possible total of 49, that is
the matrix is almost half empty. This of course is a particular example, but in
general, as the size of the network increases, its sparsity also increases in most
practical cases.

We define the sparsity of a matrix as the ratio between the number of zero
elements and the total number of elements. In the last case, we have a sparsity
of 24/49 = 0.49 or 49 %.

MATLAB has a number of demonstration matrices taken from real-life situations.
The “west0479” is a matrix describing connections in a model of a diffusion
column in a chemical plant. It is 479 x 479 and has 1887 non-zero elements.

The following instructions will load this matrix and set matrix A equal to it:

load west0479
A=west0479

We can examine its size and the number of non-zero elements using:

size(A)

ans =

 479 479

nnz(A)

ans =

 1887
Thus, the sparsity of this matrix is

%100*
479*479

)1887479*479(−

Using MATLAB, we can obtain this as:

Per_cent_sparsity = 100*(prod(size(A))-nnz(A))/prod(size(A))

Per_cent_sparsity =

 99.1776

We can also obtain a plot of the positions where there are non-zero entries,
similar to what we saw with the example network by using the MATLAB
command “spy”:

spy(A)

Chapter 2 – State and state space 123

Reordering for conservation of sparsity

We have already looked at pivoting for reducing round-off errors, when
considering Gaussian elimination. In addition to ensuring that the diagonal
element be non-zero (a zero diagonal element will lead to a breakdown of the
process), it is better that it be comparatively large, as this would reduce
computational errors.

We will now look at the special case of sparse matrices, where it is desirable to
maintain sparsity during he process of factorisation.

We saw that the processing of the sparse matrix considered in LU factorisation
did not result in adding new non-zero elements. This is not always so. We will
consider a slightly modified matrix to illustrate this point.

−−−
−−
−−−−−

−−
−−−−−

−−
−−−

5220100
2520000
22112201
0025200
10221122
0000252
0010225

The non-zero elements of this matrix is shown below:

124 A systems approach to circuits, measurements and control

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 29
The non-zero elements of the matrix after LU factorisation (both lower and upper
triangles entered on one matrix, with implied unity elements on the diagonal)
obtained using MATLAB is as shown:

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 33
Note that there are four additional non-zero elements, which have arisen as a
result of the factorisation.

We need to look at the possibility of reducing the addition of new elements, by
proper ordering of the equations. MATLAB has two important reordering
schemes:

Reverse-Cuthill-McKee reordering scheme
Symmetric Minimum Degree scheme
They are described as follows:

SYMRCM Symmetric reverse Cuthill-McKee permutation.

p = SYMRCM(S) returns a permutation vector p such that S(p,p) tends to have its diagonal elements
closer to the diagonal than S. This is a good preordering for LU or Cholesky factorization of
matrices that come from "long, skinny" problems. It works for both symmetric and asymmetric S.

SYMMMD Symmetric minimum degree permutation.

p = SYMMMD(S), for a symmetric positive definite matrix S, returns the permutation vector p such
that S(p,p) tends to have a sparser Cholesky factor than S. Sometimes SYMMMD works well for
symmetric indefinite matrices too.

Chapter 2 – State and state space 125

They both give “better” results with the LU factorisation than the original, in that
the number of non-zero elements introduced is reduced.

However, the most obvious and the simplest reordering scheme is to order the
rows (and columns) in increasing number of non-zero elements. In this particular
case, it yields the order:

2 4 6 1 7 3 5

When the rows and columns are reordered in this manner (so that the diagonal
elements remain as diagonal elements), the new matrix is:

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 -1 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

We will compare these three reordering schemes, with respect to our example.

» p=symrcm(A)

p =

 2 1 7 6 3 5 4

» q=symmmd(A)

q =

 4 1 2 6 7 3 5

» r

r =

 2 4 6 1 7 3 5

» A1=A(p,p)

A1 =

 5 -2 0 0 -2 0 0
 -2 5 0 0 -2 -1 0
 0 0 5 -2 -1 -2 0
 0 0 -2 5 0 -2 0
 -2 -2 -1 0 11 -2 -2
 0 -1 -2 -2 -2 11 -2
 0 0 0 0 -2 -2 5

» A2=A(q,q)

126 A systems approach to circuits, measurements and control

A2 =

 5 0 0 0 0 -2 -2
 0 5 -2 0 0 -2 -1
 0 -2 5 0 0 -2 0
 0 0 0 5 -2 0 -2
 0 0 0 -2 5 -1 -2
 -2 -2 -2 0 -1 11 -2
 -2 -1 0 -2 -2 -2 11

» A3=A(r,r)

A3 =

 5 0 0 -2 0 -2 0
 0 5 0 0 0 -2 -2
 0 0 5 0 -2 0 -2
 -2 0 0 5 0 -2 -1
 0 0 -2 0 5 -1 -2
 -2 -2 0 -2 -1 11 -2
 0 -2 -2 -1 -2 -2 11

» nnz(A)

ans =

 29

» nnz(lu(A))

ans =

 33

» nnz(lu(A1))

ans =

 31

» nnz(lu(A2))

ans =

 31

» nnz(lu(A3))

ans =

 29

The fact that the simple rank-order reordering is the best in this case (as it does
not introduce any new non-zero) elements does not mean that it is always the
best. It is very much dependant on the structure of the matrix under
consideration.

Chapter 2 – State and state space 127

Intuitively, a better scheme would be to reorder the balance equations after each
row is processed, in the order of the freshly computed rank order. This is much
more time consuming, but would be justified if the factored matrix is to be
repeatedly used with new vectors (b), as is the case with (say) power system
load flow studies. A still better algorithm is to allow for the fact that some of the
original non-zero elements may actually vanish during processing due to
cancellation, and to determine the rank order at each stage, taking into account
such cancellations. This is even more time consuming than the previous method,
but may be justified under special circumstances, such as in repeated on-line
transient analysis.

Sparsity programming

The efficient storage and retrieval of sparse matrices need special programming
techniques, if we are to exploit their sparsity. We can reduce both storage and
computational requirements for the processing of such matrices by proper choice
of techniques. Some reservations have been expressed in recent times about
some of the traditional methods used, on account of the relative burdens of
computation and access times of modern personal computers. It has also been
pointed out that storage is now comparatively cheap. However, along with the
advancement of technology that has brought cheap mass storage, the
dimensions of the problems that need to be tackled has also increased.
Therefore, there is a continuing need for good and efficient programming
methods for the handling of very large sparse matrices.

MATLAB has a special collection of routines for handling sparse matrices. We
have already used some of them, without bothering about how such matrices are
stored.

Let us consider our continuing example.

» A

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 -1 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

» sparse(A)

ans =

128 A systems approach to circuits, measurements and control

 (1,1) 5
 (2,1) -2
 (3,1) -2
 (5,1) -1
 (1,2) -2
 (2,2) 5
 (3,2) -2
 (1,3) -2
 (2,3) -2
 (3,3) 11
 (4,3) -2
 (5,3) -2
 (7,3) -1
 (3,4) -2
 (4,4) 5
 (5,4) -2
 (1,5) -1
 (3,5) -2
 (4,5) -2
 (5,5) 11
 (6,5) -2
 (7,5) -2
 (5,6) -2
 (6,6) 5
 (7,6) -2
 (3,7) -1
 (5,7) -2
 (6,7) -2
 (7,7) 5

The instruction sparse (A) has converted the storage of the matrix A from its
normal form into the sparse matrix representation in MATLAB. As can be seen,
this representation uses two integer arrays to indicate the indices of each non-
zero element and another real (or complex) array to represent the value of each
element. In the case of this example, it is obviously not an efficient mode of
storage, for we have used a total of (3*29 = 87) locations to store 49 (including
zero) elements. However, it comes to its own as the size of the matrix and the
sparsity increases, as in the case of the test matrix presented earlier.

We will now consider a slightly more sophisticated mode of representation
related to this same method, which allows for the fact that the diagonal element
of most matrices of practical interest would be non-zero, and also facilitates easy
reordering.

The first column gives the values of the diagonal elements, in order, as at the
beginning. The second and the third columns give the row ordering scheme, and
at the start, it is simply 1, 2,3 etc. We will later see why we need two columns.

Chapter 2 – State and state space 129

5 1 1 2 -2 P1

5 2 2 1 -2 P2

11 3 3 1 -2 P3

5 4 4 3 -2 P4

11 5 5 1 -1 P5

5 6 6 5 -2 P6

5 7 7 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

The next set of three columns give the first non-zero off-diagonal element in each
row as a combination of three values The first of these give the column index, the
second gives the element value and the third is a pointer to the location of the
next non-zero element in the row. The pointer will be set to zero if there are no
more non-zero values.

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

3 -2 P

3 -2 0

2 -2 P

5 -2 0

3 -2 P

7 -2 0

5 -2 P

5 -1 0

4 -2 P

4 -2 P

6 -2 0

5 -2 P

6 -2 P

7 -1 0

7 -2 0

P1

P2

P3

P4

P5

P6

P7

If we now reorder the equations according to (say) the pattern r discussed earlier,
we will not move any of the values other than the pointers and reverse pointers
on the second and third columns:

r = 2 4 6 1 7 3 5

130 A systems approach to circuits, measurements and control

5 4 2 2 -2 P1

5 1 4 1 -2 P2

11 6 6 1 -2 P3

5 2 1 3 -2 P4

11 7 7 1 -1 P5

5 3 3 5 -2 P6

5 5 5 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

The original matrix and the reordered matrix are as follows:

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 0 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

>> r=[2 4 6 1 7 3 5]

r =

 2 4 6 1 7 3 5

>> A1=A(r,r)

A1 =

 5 0 0 -2 0 -2 0
 0 5 0 0 0 -2 -2
 0 0 5 0 -2 0 -2
 -2 0 0 5 0 -2 -1
 0 0 -2 0 5 -1 -2
 -2 -2 0 -2 -1 11 -2
 0 -2 -2 0 -2 -2 11

Follow the pointers and work out how the indices help you to interpret the entroes
after reordering.

