
 
 
 

2 
State and state space 
 
We have been studying electrical circuits with reference to the complex 
frequency s and the s-plane. You have seen this to be a technique that is most 
convenient, especially when you are interested in the steady-state behaviour of a 
circuit. There is an alternative way in which we can model dynamic systems, 
including electrical circuits, which is more suited for the study of their transient 
behaviour.  
 
The state of a system in this context means exactly the same as the common 
English meaning of the word. However, we need to be able to define it more 
precisely. For a known system, a knowledge of its present state and any future 
inputs from the external world should be sufficient for us to be able to predict its 
future state. This then is what the state means. The variables, whose values tell 
us what the present state is, are known as state variables. 
 
A set of state variable is the minimum set of variables, whose values at any 
instant, along with the inputs from then onwards, would enable the complete 
determination of the values of the state variables in the future. In effect, the state 
variables contain all the information about the past and the present, necessary 
for the prediction of their future values. 
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2.1 State variables and state space representation 

Introduction 
 
We are used to the description of dynamic systems using differential equations. 
We will examine their relationship through a simple example.  
 
A pendulum, swinging (with small amplitude) in a gravitational field, in a vacuum 
will continue to swing indefinitely as there is no resistance to slow it down. 
Similarly, an initially charged capacitor shorted through an inductor (assumed to 
be without resistance) will give rise to a cyclic charge-discharge activity. In the 
absence of any circuit resistance or leakage across the capacitor, this will 
continue indefinitely. Both these phenomena may be described by a simple 
second order differential equation. 
 
 d2 x / dt2 + ωn

2 x = 0 
 
[If there were any resistance, the equation would be of the form 
:  

d2 x / dt2 + 2ζωn dx / dt + ωn
2 x = 0   ] 

 
We can break this down into two simultaneous first order differential equations by 
defining two new variables: 
 
 x1 = x 
 x2 = dx / dt = dx1 /dt 
 
Then, 
  

dx1 / dt = x2 
 
 dx2 /dt = -ωn

2 x1 
 
 
If we know the values of x1 and x2 at any instant of time t1, then, it is possible to 
compute their values for all t > t1 (We will also need to know all inputs for t ≥ t1., 
assumed to be zero in the above formulation) Thus, x1 and x2 are a valid set of 
state variables. They are of course not the only valid set, for, we could define 
(say) 
 
 z1 = x1 + x2 
 z2 = x1 – x2, 
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Then, we can obtain x1 and x2 from z1 and z2, and hence, (z1, z2) is also a valid 
set of state variables. There are thus an infinite number of such sets of state 
variables. 
 
The space defined by the state variables is known as the state-space. In the 
above example, the two-dimensional space x1-x2 is the state-space, and any 
point on it will represent a state of the system. If the state vector in a 3-vector, 
then its corresponding state-space is also three-dimensional. An n-dimensional 
state vector will describe a motion in an n-dimensional state-space. 
 
 We saw how the state space representation relates to the description of a 
physical system otherwise described by a set of differential equations. We will 
now examine the relationship between state space and the system function of a 
network. The system function is, as we saw earlier, a function of the complex 
frequency s, representing the ratio of the Laplace transform of a response to the 
Laplace transform of the excitation causing the response. In this sense, we can 
look at all such functions as transfer functions. 
 
We have already seen that if the (network) model can be arranged as a set of 
interconnections among integrators, their outputs constitute a possible set of 
state variables. With this background, we will attempt to breakdown a function of 
the complex variable s into a set of relations that can be easily represented by 
integrators. 
 
We have also noted that the most general form of a system function is given by a 
real rational function of s, expressed as the quotient of two polynomials in s. 
  
  

H(s) = q(s) / p(s), where 
  

q(s) = bm(s-z1)(s-z2) .  .  .  (s-zm) 
p(s) = (s-p1)(s-p2)  .  .  .  .  (s-pn) 

  
 
Unlike in the study of other more general systems (such as in Control Systems), 
we have the advantage that network functions of passive networks are subject to 
certain constraints. The poles and zeros are simple, that is there are no higher 
order poles or zeros, and there are no poles or zeros on the right hand side of 
the s-plane. 
 
We can expand H(s) into partial fractions, so that each term corresponds to a 
single integrator, whose output can then be considered as a state variable. We 
will, for completeness, examine the general case of how to obtain a set of state 
variables, given a real rational function of s. 
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This is of course a very mechanical treatment, giving no physical insight into the 
problem being studied. It is much more useful to recognise suitable physical 
quantities as the state variables, and obtain the equations governing their 
relationships.  
 
We saw that there are many alternate ways of describing the behaviour of a 
dynamic system, using different state variables. They are all transformations of 
each other, and most have no physical significance. In the case of the simple 
pendulum considered earlier, we could have derived the state space description 
using the angular displacement and the angular velocity as state variables. 
These obviously have physical significance. But an equally valid, from a 
representational point of view, pair of state variables would have been the sum of 
the angular displacement and the angular velocity as one variable and their 
difference as the other. This combination does not make physical sense.  
 
In engineering, we would always prefer to formulate our equations in terms of 
variables that have some physical significance. This has a number of 
advantages, including the ability to make reality checks and providing us with an 
insight into the problem under study. 
 
We noted earlier on that the state variables contain all the information about the 
past and the present necessary for the prediction of future behaviour. There are 
many ways in which these can be visualised. They are connected with “memory”, 
and they are in some manner associated with energy storage. In linear electrical 
circuits, only inductors and capacitors can store energy (Resistors dissipate 
energy, but cannot store it.)  
 
We have a choice in the selection of state variables with physical significance. 
We could select either (flux φ, charge q) or (current i, voltage v) as our preferred 
set of variables. Other combination including different combinations of these are 
of course possible as we saw earlier, but these seem to offer alternatives with 
real physical significance. 
 
We may use the methods of nodal and mesh analysis, or alternatively, energy 
function methods to obtain the state equations of a system. 
 

2.1.1 State-space 
 
A second order system (with no inputs) may be represented by a set of two state 
equations as follows: 
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),(
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2111
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We can draw a block diagram of these two equations, using two integrators, as 
follows: 

f1(x1,x2)

f2(x1,x2)

x1

x2

dx1/dt

dx2/dt

 
 
 
The outputs of the integrators may be taken as a possible set of state variables. 
 
We can then visualise this system as moving in a two-dimensional space as 
shown below. 
 

X1

X2

X2(t)

X1(t)

t

 
 
A point [x1(t), x2(t)] on the path represents the state of the system at time t. It is 
obvious that the system shown above would be non-linear, and be a rather 
complex one. 
 
The simple harmonic motion represented by the set of linear equations 
 

dx1 / dt = x2 
 
 dx2 /dt = -ωn

2 x1 
 
considered earlier would be represented on the state-space as follows: 
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X1

X2

 
 
A trajectory on a three-dimensional state-space may be visualised as follows: 
 
 

X1

X2

X3

 
 
Unfortunately, it is not possible to directly represent spaces of higher dimensions 
on a two-dimensional surface, but you should not have much difficulty in 
visualising the extension of the concept of state – space to n dimensions. 
 

2.1.2 Obtaining state variables and state equations from a 
transfer function 

 
Consider the general form of a transfer function: 
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Let the function H(s) denote a relationship between two functions U(s) and Y(s) 
such that: 
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Dividing by sn and rearranging, 
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The implementation of these using integrators is shown in the figure. 
 
From this, we can write down the state space description by inspection, if we 
chose the outputs of the integrators as the state variables. 

b0
Σ

Σ
b1

bn-2
Σ

Σbn-1

Σ

a0
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an-2
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bn

+

+

+

+

+
+

+

+

+

-

-

-

-

u(t)

y(t)

x1

dx1/dt

x2

xn-1

xn

dx2/dt

dxn-1/dt

dxn/dt
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The output y is given by: 
 

ubxy 01 +=  
 
In matrix form, we can write: 
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In concise form: 
 

DUCXY
BUAXX

+=
+=&  

 
As has been repeatedly emphasised, there is no unique set of state variables, 
and what we defined in the above analysis is just one possible selection of state 
variables, given the function H(s). We will now examine one other possible form, 
obtained by the partial fraction expansion of the given function. 
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Let us first assume that all the poles are distinct and real. Then, we can write: 
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Considering each term, 
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This leads to: 
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If we again select the outputs of the integrators as the state variables: 
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In matrix form: 
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This is again of the form 
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BUAXX

+=
+=&  

 
even though the structure of the matrices are different. 
 

2.1.3 Resistors, inductors and capacitors 
 
Consider the following circuit elements: 
 
 Resistance R (ohms) 
 Conductance G (mhos) (=1/R) 
 
 Capacitance C (farads) 
 Elastance S (darafs) (=1/C) 
 
 Inductance L (henrys) 
 Inverse inductance Γ 

(inverse henrys) (=1/L) 
 
For the class of linear elements, we have the following relationships: 
 
Defining relationships: 
 

φφ Γ==
==
==

iLi
SqvCvq
GviRiv
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,

 

 
i-v relationships: 
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The relationships for capacitors and inductors may also be written in integral form 
as: 
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Relationships derived from resistances do not yield state equations, as they can 
only be algebraic equations and not differential equations. If we select v-i 
relationships as the relationships of choice (this is not necessary, we could 
equally well select others such as flux – charge relationships), we are led 
naturally to select: 
 

voltages across capacitors 
and 

currents through inductors 
 
as the state variables of choice. 
 
[In the generalised theory of dynamic systems, there are analogous choices to be 
made for the representation of physical phenomena in mechanical systems, 
thermodynamic systems and fluidic systems] 

2.1.4  Formulation of state equations by nodal and mesh 
analysis 

 
We will demonstrate the derivation of state equations through nodal and mesh 
analysis through a simple example. Consider the network shown below: 

R1 C1

R2C2L
e

i1 i3i2

.  
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Writing the mesh equations: 
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Differentiating the second and third equations to transform from integral to 
differential form, these may be rewritten as: 
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From the above, it appears that there are two variables with second derivatives. 
In fact, there is only one, (i1-i2). We need to recognise this fact, that there is only 
one variable with a second derivative. 
 
If we rewrite the equations using (i1-i2) as a single variable (and also abandoning 
(say) i1 as an independent variable): 
 

0
0)()(

)()(

32232

312212121

2121211

=++−

=−++−−

=−++−
••

•

iRCii
iCiCCiiCLC

eiiLiRiiR

&

48476

48476

 

 
As there are no derivatives of i2, it can be eliminated (by substituting for i2 from 
the third equation, into the other two) to yield: 
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If we now define: 
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We get the state equations: 
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Rearranging, we get: 
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In matrix form, 
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where: 
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We could, alternatively, have started by writing the nodal equations, and obtained 
the state equations in terms of the node-pair voltages and their derivatives. 
 
Another approach (to both nodal and mesh analysis) is to define the state 
variables in terms of physical variables that correspond directly to the state – the 
currents through inductors and voltages across capacitors. This would be the 
most direct approach, and we will repeat the analysis of this circuit using his 
approach. (This is a method that can be carried across to the study of other 
systems such as mechanical, thermal and fluid systems, which all have 
identifiable “through” variables and “across” variables) 
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Writing the nodal equations in terms of i1, v1 and v2, we have: 
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We also have the additional relationship: 
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Rearranging, we have: 
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This is in the standard form. Note how easily the state equations could be 
obtained, if we make a proper choice of state variables. 
 
We could equally well have obtained the state equations by writing the mesh 
equations. 
 
We can now formally state the procedure for writing down the state equations as 
follows: 
 

1. Select the currents through inductors and voltages across capacitors as 
the state variables. 

2. Write the loop (node-pair) equations for all loops (node-pairs) that 
contain (are connected to) at least one storage element (that is, an 
inductor or capacitor) 

3. If there are n storage elements and only m (m<n) loop (node-pair) 
equations, then there will be an additional (n-m) relationships between 
the variables we have chosen. Altogether, there will be n equations. 

2.1.5 Energy functions 
 
We have defined the loop-based energy functions as: 
 

ki

l

ki
ik

T

ki

l

ki
ik

T

ki

l

ki
ik

T

IISISIV

IIRIRIF

IILILIT

∑

∑

∑

=

=

=

==

==

==

1,

1,

1,

 

 
where l is the number of independent loops and the node-pair-based energy 
functions as: 
 

ki

n

ki
ik

T

k

n

ki
iik

T

ki

n

ki
ik

T

EEEET

EEGGEEF

EECCEEV

∑

∑

∑

=

=

=

Γ=Γ=

==

==

1,

*

1,

*

1,

*

 

 



70 A systems approach to circuits, measurements and control 

where n is the number of independent node-pairs. 
 
L, R and S represent the loop inductance, resistance and elastance (reciprocal 
capacitance) while C,G and Γ represent the node capacitance, conductance and 
reciprocal inductance matrices. 
 
Each of these energy functions is a positive semi-definite quadratic form. Their 
positive-semi-definiteness may be established qualitatively by considering that 
the loop and node-pair matrices in a passive network have to be positive-semi-
definite because in such a network, the energy stored or dissipated cannot be 
negative. 
 
Considering the energy functions derived from the loop equations, if we set 

1
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then we get: 
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Similarly, starting with the energy functions defined using node-pair equations 
and setting 
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we get 
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We may derive special cases from these results. For example, for an LC 
network, F is zero and for an RC network, T is zero. Therefore: 
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Similar results may be obtained for the driving point admittances using the node-
pair-based energy functions. Obviously, these are not the methods used for 
evaluating driving point impedances and admittances, as they lead to complex 
expressions. However, the insight provided by this analysis is very useful. 
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2.1.6 Formulation of state equations using energy 
functions 

 
We have already briefly come across the use of energy functions in the previous 
lecture, where we referred to the modelling of the capacitor microphone. Let us 
now look at it in a little more detail. 

Conservative systems 
 
We will first consider conservative systems, that is, systems without energy 
sources or sinks, and later go on to consider non-conservative systems. 
 
Example 1 
 
Consider a very simple example, with only one inductor and capacitor as shown. 
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i

 
Let us define T as the total system kinetic energy and V as the total system 
potential energy. We will call the total energy E 
 
In terms of the charge q and its derivative, we can write: 
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Since the system is conservative,  
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In terms of the flux linkage λ and its derivatives: 
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We could use Lagrange’s energy balance equation for conservative systems, 
which states that: 
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where  
T = total system kinetic energy 
V = total system potential energy 
n = 1, 2, … refers to the independent   coordinates in the system 
qn = generalised coordinate 

nq& = generalised velocity 
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Example 2 
 
Let us consider one more example: 
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We will consider the flux linkages λ associated with each of the elements as 
candidates for the selection of independent coordinates.  
 
[The meaning of a flux linkage associated with a capacitor is not quite clear. We 
will assume that a capacitor is in parallel with an infinite inductor, carrying zero 
current, but with a flux linkage λ such that its time derivative is equal to the 
voltage across the capacitor.] 
 
We could select (say) λ1 and λ2 as our coordinates (but not λ2 and λ4, as they are 
not independent) 
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Evaluating with respect to λ1 we have: 
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This yields the state equation: 
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Similarly, evaluating with respect to λ2, we get: 
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leading to the state equation: 
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These two equations may now be expressed in standard form by defining a new 
set of state variables as: 
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Non-conservative systems 
 
Let us now consider non-conservative systems. The complete Lagrange’s 
equations for such systems are as follows:  
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where  
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T = total system kinetic energy 
D = total system dissipation factor, and is defined as one half the rate at which 
energy is dissipated in the system as heat. 
V = total system potential energy 
n = 1, 2, … refers to the independent   coordinates in the system 
Qn = generalised forcing function relative to coordinate n 
qn = generalised coordinate 

nq& = generalised velocity 
 
To obtain the forcing function relative to the nth coordinate: 
 
Suppose the system has all its coordinates q1, q2, .   .   .   . , qn frozen when the 
system is in an arbitrary configuration. Now, let one coordinate qi increase by δqi. 
Let δwi be the work done by all external forces in the system during the 
displacement δqi. Then,  
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Example 3 
 
Let us consider the following example: 
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We will choose λ1, λ2 and λ3 as the coordinates. 
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Now let us write down the Lagrange’s equations: 
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Substituting in the Lagrange’s equation: 
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From the above, it appears that there are many state variables, as the first 
derivatives of λ1, λ2 and λ3 and the second derivative of λ1 appear in the above 
equations. However, a careful study reveals that most of them can be eliminated: 
 
Substituting from equations (1) and (2) into equation (3) yields: 
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which correspond to only two state equations, as should have been expected for 
a system with only two energy storage elements. 
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