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Transform methods 
 
Some of the different forms of a signal, obtained by transformations, are shown 
in the figure. 
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We will very briefly review the use of Fourier and Laplace transforms, and then 
have a quick look at the DFT (Discrete Fourier Transform), the FFT (Fast Fourier 
Transform, a fast computational method for evaluating the DFT) and the z 
transform. 



2 A systems approach to circuits, measurements and control 

1.1 The s-plane and the Laplace domain 

Introduction 
 
You are familiar with the fundamental circuit laws and how they are applied to 
both direct current and alternating current circuits. You have also used the 
Laplace transform to help you with the solution of differential equations that you 
encounter in solving circuit problems. We will commence this course with a brief 
review of the s-plane, with the intention of looking at some of the characteristic 
properties of selected circuits from a slightly different angle. A formal 
presentation of the Laplace transform will not be attempted, rather, only its 
applications in the study of circuits (and later) and control systems. 
 
We start by recognising the s-plane, a complex plane on which we can place the 
poles and zeros of a network function. (A network function is a function, which 
represents some characteristic, such as the input impedance, of the network. We 
will deal with each of these ideas later on.) The s-plane is a complex plane, 
whose coordinates are the real part σ and the so-called “imaginary” part jω 
 
We can represent any function of the complex variable s (= σ+ jω ) by its poles 
and zeros, if we disregard any multiplying factors. The poles are those values of 
s for which the function goes to infinity, and zeros are those values of s for which 
the function vanishes. 

The general complex exponential excitation function 
You have studied the behaviour of circuits under different excitations, by dc, ac 
and special functions such as impulse and step functions (In practice, we have 
only approximations to these special functions, as sudden changes are not 
possible in real life.) We will now look at a more general excitation function that 
can be used to study the behaviour of circuits in a more convenient and uniform 
manner. 
 
Consider the general complex exponential excitation function, x(t) = X es0t u-1(t). 
 
u-1(t) represents a unit step function at the origin, and is introduced to ensure that 
the excitation is applied at time zero. We are only interested in causal systems, 
that is, where the response occurs only after the excitation. The complex variable 
s0 (= σ0+ jω0) is general enough to represent most types of input that we are 
interested in, and in particular, sinusoidal inputs. 
 
With σ0 zero, we have a pure, steady, sinusoid; while with ω0 zero, it is either an 
exponentially growing or an exponentially decaying quantity, depending on 
whether σ0 is positive or negative. With complex s0, we would have either 
growing or decaying sinusoids. 
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Network functions 
We said earlier that a network function is a function, which represents some 
characteristic, such as the input impedance, of a network. Let us now look at this 
in a little more detail. 
 
The simplest network that we can think of is a single-element, two-terminal 
network, such as a resistor. The characteristics of a resistor are described by the 
Ohm’s Law equation: 
 
 v = iR 
 
Where v is the voltage difference across the resistor, i is the current through it, 
and R is its resistance, which defines the relationship between v and i. With 
inductors (inductance L) and capacitors (capacitance C), we have relationships 
that are dependant on rates of change, giving rise to differential equations: 
 
 v = L di / dt for an inductor 
 i = C dv / dt for a capacitor 
 
Taking Laplace transforms (assuming zero initial conditions), we get: 
 
 V(s) = [Ls] I(s)  for an inductor 
 V(s) = [1/Cs] I(s) for a capacitor 
 
We can now write the relationship between voltage and current for resistors, 
inductors or capacitors (or any combination of them) as: 
 V(s) = Z(s) I(s) 
Or Z(s) = V(s) / I(s) 
 
Z(s), a function of the complex variable s, is known as the impedance of the two-
terminal network. We also have Y(s), the inverse of Z(s) defined by the 
relationship 
 
 Y(s) = I(s) / V(s) 
 
Y(s) is known as the admittance of the network. 
 
We can visualise a two-terminal network as a single-port network. If it is to be 
excited by a source, the source has to be connected across the two terminals, 
thus making it appear as a single port to the source. Most networks, if they are to 
accomplish any useful purpose, have to have more than one port. A network may 
be connected between (say) a source and a load to achieve some desired 
connectivity characteristic, a kind of transformation. We then have, at the 
simplest, two-port networks with just one pair of ports, which we naturally identify 
as the input port and the output port. A complex network is made up of 
interconnections of a large number of such networks, not necessarily two-port 
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networks. However, multi-port networks can, in most cases, be analysed using 
two-port network theory, and we confine our attention to them in this course. 
 
We saw earlier how impedance and admittance functions can describe a single-
port network. In a two-port network, we would naturally have to extend these 
concepts to both ports, so that we will have: 
 
 Input impedance 
 Input admittance 
 Output impedance 
 Output admittance 
 Transfer impedance and admittance 
  
as functions that characterise the network. There are other functions too which 
are of significance, such as: 
 
 Transfer function 
 Characteristic impedance 

Scattering matrix, which defines the relationship between the incident 
power and the reflected power. 

 
Some of these ideas will be discussed later. 
 
We arrived at the concept of network function through the Laplace transform. The 
system function of a network (a network function) is a function of the complex 
frequency s, representing the ratio of the Laplace transform of a response to the 
Laplace transform of the excitation causing the response. We assume that the 
network is initially relaxed, that is the stored energy in the network is initially zero. 

Pole-zero patterns 
The most general form of a system function is given by a real rational function of 
s. It can be expressed as the quotient of two polynomials in s. Such a function is 
completely described by its poles, zeros and a multiplier factor.  
 
Let us examine such a function, H(s). 
 

H(s) = q(s) / p(s), where 
 

q(s) = bm(s-z1)(s-z2) .  .  .  (s-zm) 
p(s) = (s-p1)(s-p2)  .  .  .  .  (s-pn) 

 
The finite zeros of H(s) are z1,z2, . . . , zm while its finite poles are at p1, p2, .  .  . , 
pn. In addition to these finite poles and zeros, you can see that there would be 
additional poles or zeros at infinity, depending whether m>n or n>m, of order  
(m-n) or (n-m). 
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A study of the pole-zero pattern of a system (or network) function gives us an 
insight into its behaviour. For example, an examination of the driving point 
impedance function of a one-port network will define its impedance at all natural 
frequencies, and enable us to obtain a physical realisation of the impedance 
using actual components. Similarly, it is possible for us to obtain both the 
frequency characteristics and a physical realisation of a two-port filter network, 
given its pole zero pattern. 
 
As a network function is completely defined by its poles and zeros, they are 
called the critical frequencies of the system function. The (finite) poles of the 
system function correspond to the natural frequencies of the network, that is the 
frequencies of natural oscillations. These are also known as the natural modes of 
the network. 
 
The order of a system function is the highest order (in s) of the denominator or 
the numerator, and gives an indication of its complexity. 

Properties of LC, RC & RLC network functions 
 
Before considering the properties of passive network functions such as those of 
LC, RC and RLC networks, we need to be familiar with what are known as 
positive real functions.  
 
LC, RC and RLC network functions all have certain common properties.  
 
All these system functions, whether immitance (impedance or admittance) 
functions or transfer functions, are quotients of two polynomials in s, with real 
rational coefficients. They are thus real rational functions. 
 
They are all passive functions, with no intrinsic energy sources. Hence, if viewed 
as response functions to an impulse excitation, they cannot diverge without limit. 
Therefore, they cannot have poles (or zeros) on the right-half plane, nor can they 
have multiple-order poles on the j axes.  
 
They obey the reciprocity theorem. Thus, any two impedances obtained by 
interchanging the points of excitation and response are equal. This would mean 
that the resulting matrices are symmetric. 
 
Let us now look at each of these types of networks. 
 
The following properties of an LC network may be derived: 
 
 They are simple, that is there are no higher order poles or zeros. 
 They all lie on the j axis. 
 Poles and zeros alternate. 
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The origin and infinity are always critical frequencies, that is, there will be 
a pole or zero at both the origin and at infinity. 

 The multiplicative constant is positive. 
 
RC (and RL) network functions have characteristics that are different from those 
of LC networks. Since an RC network has resistive components, it cannot have a 
zero-valued impedance at any real frequency. Its zeros (and poles) are on the 
non-positive σ axis of the s-plane. It should also be noted that the form of the 
impedance function is different from that of the admittance function, unlike in the 
case of the LC network. However, the impedance function of an RC network is 
similar in form to the admittance function of an RL network, and vice versa. 
 

The poles and zeros of an RC driving point function lie on the non-
positive real axis. 
They are simple. 
Poles and zeros alternate. 
The slopes of impedance functions are negative, those of admittance 
functions are positive. 

Energy functions 
 
Energy functions or “energy-like-functions” may be used for the derivation of 
properties of driving point impedance and admittance functions of passive 
networks. When s = jω, these functions are directly related to the energy stored 
in the network, as currents through inductances or voltages across capacitances, 
that is, as electromagnetic or electrostatic energy.  
 
These functions are positive semi-definite functions. 
 
We define three functions T, F and V, corresponding to the kinetic, dissipation 
and potential energies as follows: 
 
Consider the loop equations, in matrix form: 
 

[Z] [I]  = [E]  
 

where    [Z] = s[L] + [R] + [S] / s,   
 
(S is the loop elastance, the reciprocal of loop capacitance) 
 
Pre-multiplying both sides of the equation by the transpose of the complex 
conjugate of [I] will yield an energy-like expression with three terms (denoted by 
T, F and V) related to the inductance, resistance and elastance of the loop 
circuits. 
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We may define another set of parallel functions V*, F* and T* starting with the 
node-pair equations: 
 
    [Y] [E] = [I] 
 
Again, pre-multiplying both sides by the transpose of the complex conjugate of 
[E],we obtain the expressions for V*, F* and T*. 
 
The two derivations give us two forms of the energy function as: 
 
    sT + F + V/s 
    sV* + F* + T*/s 
 
These may be used to evaluate the driving point impedances and admittances by 
imposing suitable conditions. 
 

1.1.1 The s-plane 
 
The s-plane is a complex plane (axes σ and jω) as shown in the figure. 

The s-plane
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Any point s0 on the plane will have two coordinates σ0 and jω0 as shown. They 
are known as the “real” part and the “imaginary” part of the complex number s0 (= 
σ0 + jω0). However, there is nothing more real in the real part than in the 
imaginary, both are real enough. This terminology has arisen due to historical 
reasons, and should be treated as mere names, with no significance in the 
meaning. 
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s0 can also be represented in polar form, as having a magnitude  s0 , and angle 
θ. This of course further illustrates that all quantities are real in the normal 
meaning of the word. 
 
The relationships among these various quantities are obvious from the diagram: 
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We can represent a function of a complex variable s (= σ + jω). by its poles and 
zeros. By poles we mean those values of s for which the function becomes 
infinite, that is, its denominator becomes zero; and by zeros we mean those 
values of s for which the function vanishes, that is, the numerator becomes zero. 
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Function represented
by poles and zeros:

  
 
The poles are marked by crosses (r) and zeros by noughts (O) as shown. Note 
that any multiplying factor (k, in the illustration) is not represented on the s-plane 
plot
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1.1.2 The general complex exponential excitation 
function 

 
The behaviour of the general exponential excitation function 
 
x(t) = X es0t u-1(t).  
 
for s0 lying in different parts of the s-plane is shown in the figure. 
 

The s-plane

σ
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With σ0 zero, we have a pure, steady, sinusoid; while with ω0 zero, it is either an 
exponentially growing or an exponentially decaying function, depending on 
whether σ0 is positive or negative. With complex s0, we would have either 
growing or decaying sinusoids. 
 
Fourier analysis enables us to express any repetitive waveform as the 
summation of a series of sinusoids, with arbitrary accuracy. Thus, any required 
repetitive excitation pattern might be implemented using the general complex 
exponential excitation. This also applies to non-repetitive waveforms, as they can 
be treated as repetitive waveforms with an infinite period. The use of the complex 
excitation function further enable us to decay any component of the excitation, 
using the real part of the complex exponential.  
 
With s0 equal to zero and X equal to one, we can obtain the unit step function. 
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1.1.3 Two-port networks 
 

Two-port network
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Consider a two-port network as shown. 
 
The driving point impedance (or the input impedance) looking in at port 1 would 
obviously depend on the type of termination at port 2. If we recognise port 1 as 
the input and port 2 as the output, it is usual to compute the driving point 
impedance at port 1 with port 2 open circuited, that is, with I2 equal to zero. 
 
We can describe the behaviour of the two-port network by the following set of two 
equations: 
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The z’s are called the open circuit impedances. As noted earlier, when I2 is zero, 
we have, from the first equation: 
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z11 is the driving point impedance at port 1, or the input impedance of the 
network, looking at port 1. z21 is a transfer impedance. 
 
Similarly, with I1 zero, we obtain: 
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We could have described the network in terms of admittances, instead of 
impedances, as given below: 
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We saw earlier why the impedances z11, z12, z21 and z22 are known as open 
circuit impedances, for we obtained them by setting I1 and I2 equal to zero. 
Similarly, the admittance functions turn out to be short circuit admittances. 
 
With V2 equal to zero, we have: 
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and setting V1 to zero gives: 
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Other representations of two-port networks are also in use. One such is the 
hybrid parameter representation used in electronic circuit analysis. 
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ABCD representation is commonly used in the study of transmission lines. Here, 
the current I2 is, by convention, shown as leaving the network rather than as 
entering the network. 
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1.1.4 Positive real functions 
 
A complex function G(s) is said to be positive real when: 
 
G(s) is real for all real s 
Re (G(s)) ≥ 0, for Re(s) ≥ 0 
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The driving point function of any physical network is positive real, and every 
rational function that is positive real can be realised as the driving point function 
of a network. Hence, the study of such functions is important in the study of 
networks. 
 
If G is positive real, then 1/G is also positive real. 
 
It can be shown that G(s) is positive real if it satisfies the following conditions: 
 

1. G(s) is real for all real s 
2. G(s) is analytic in the right-half plane. 
3. Any poles on the j axis are simple, with real positive residues. 
4. Re (G(jω)) ≥ 0 for all ω 

 
All conditions relating to poles also apply to zeros, as 1/G also has to be positive 
real. 
 
The following properties of positive real functions may be deduced from these 
conditions: 
 
No negative coefficients occur in either the numerator or denominator. 
 
The highest (and lowest) powers of the numerator and denominator cannot differ 
by more than unity. 
 
Poles (and zeros) on the j axes occur in conjugate pairs. 
 

1.1.5 Positive semi-definite functions 
 
We define a positive semi-definite function as one which is always either positive 
or zero. We will consider only quadratic forms in the present situation. 
 
All the terms of a quadratic form are of the second order. In matrix form, we can 
represent a quadratic form as: 
 

XAX T  
 
where X is a column vector and A is a symmetric matrix. 
 
(Note: We will confine our attention to symmetric matrices, and both X and A are 
real) 
 
The following definitions and properties apply: 
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1. A real matrix A is said to be positive semi-definite if and only if  
 

0≥XAX T  
 

 for all real and finite X 
 
 
2. A is said to be positive definite if and only if it is positive semi-definite, and in 
addition 
 

0=XAX T  
 

only if X=0 
 
3. For A to be positive definite, each of its principal minors should be positive. 
(This may be tested by testing a set of determinants obtained by deleting 
successive rows and columns from A for positiveness.) 
 
4. For A to be positive semi-definite, each of its principal minors should be non-
negative.  

1.1.6 Properties of RC networks 

The s-plane
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The figure shows a typical pole-zero pattern of the impedance function of an RC 
network. Note that: 
 

The poles and zeros are simple. 
They all lie on the non-positive σ- axis. 

 Poles and zeros alternate. 
 
The plot of impedance vs’ σ, along the non-positive real axis is shown below. 
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Note that there is a critical frequency at infinity, but not at the origin, in this 
particular case 
 
In general, the critical frequency of the smallest magnitude is a pole, lying on the 
non-positive (that is, at the origin or on the negative) real axis. 
 
When the number of finite poles is greater than the number of finite zeros, there 
will be a zero at infinity, as is the case in the example (two finite poles and only 
one finite zero). When the degrees of the numerator and denominator 
polynomials are equal, there will be no critical frequency at infinity. Driving point 
impedance functions of RC networks have negative gradients along the σ axis. 

1.1.7 Properties of LC networks. 

The s-plane

σ
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The figure shows a typical pole-zero pattern of the impedance function of an LC 
network 
 
Note that  
 
 The poles and zeros are simple. 
 They all lie on the jω axis. 
 Poles and zeros alternate. 
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The variation of impedance with frequency corresponding to this pole-zero 
pattern may be obtained by substituting jω for s, and is as shown below. 
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Note that there are critical frequencies at the origin and at infinity.  
 
The characteristics of driving point admittance functions of LC networks are 
similar to those of impedance functions, and may be obtained by substituting 1/s 
for s. 
 
For the impedance function considered earlier, the admittance function would 
have he following shape: 

ω
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Plots of other typical immitance functions of LC networks are shown below. 
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In addition to the properties mentioned earlier, you may have noticed another 
property of LC functions.  
 
They all have positive gradients, that is, the value of the function always 
increases with increase of frequency.  
 
This arises from the fact that all the residues at the poles and zeros are positive, 
that is, the partial fraction expansion of the functions all have positive 
coefficients. Substitution of s = jω and differentiation leads to this result. 
 
 
 
 
 
 
 
 
 
 


