
 
 
 

2 
State and state space 
 
We have been studying electrical circuits with reference to the complex 
frequency s and the s-plane. You have seen this to be a technique that is most 
convenient, especially when you are interested in the steady-state behaviour of a 
circuit. There is an alternative way in which we can model dynamic systems, 
including electrical circuits, which is more suited for the study of their transient 
behaviour.  
 
The state of a system in this context means exactly the same as the common 
English meaning of the word. However, we need to be able to define it more 
precisely. For a known system, a knowledge of its present state and any future 
inputs from the external world should be sufficient for us to be able to predict its 
future state. This then is what the state means. The variables, whose values tell 
us what the present state is, are known as state variables. 
 
A set of state variable is the minimum set of variables, whose values at any 
instant, along with the inputs from then onwards, would enable the complete 
determination of the values of the state variables in the future. In effect, the state 
variables contain all the information about the past and the present, necessary 
for the prediction of their future values. 
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2.1 State variables and state space representation 

Introduction 
 
We are used to the description of dynamic systems using differential equations. 
We will examine their relationship through a simple example.  
 
A pendulum, swinging (with small amplitude) in a gravitational field, in a vacuum 
will continue to swing indefinitely as there is no resistance to slow it down. 
Similarly, an initially charged capacitor shorted through an inductor (assumed to 
be without resistance) will give rise to a cyclic charge-discharge activity. In the 
absence of any circuit resistance or leakage across the capacitor, this will 
continue indefinitely. Both these phenomena may be described by a simple 
second order differential equation. 
 
 d2 x / dt2 + ωn

2 x = 0 
 
[If there were any resistance, the equation would be of the form 
:  

d2 x / dt2 + 2ζωn dx / dt + ωn
2 x = 0   ] 

 
We can break this down into two simultaneous first order differential equations by 
defining two new variables: 
 
 x1 = x 
 x2 = dx / dt = dx1 /dt 
 
Then, 
  

dx1 / dt = x2 
 
 dx2 /dt = -ωn

2 x1 
 
 
If we know the values of x1 and x2 at any instant of time t1, then, it is possible to 
compute their values for all t > t1 (We will also need to know all inputs for t ≥ t1., 
assumed to be zero in the above formulation) Thus, x1 and x2 are a valid set of 
state variables. They are of course not the only valid set, for, we could define 
(say) 
 
 z1 = x1 + x2 
 z2 = x1 – x2, 
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Then, we can obtain x1 and x2 from z1 and z2, and hence, (z1, z2) is also a valid 
set of state variables. There are thus an infinite number of such sets of state 
variables. 
 
The space defined by the state variables is known as the state-space. In the 
above example, the two-dimensional space x1-x2 is the state-space, and any 
point on it will represent a state of the system. If the state vector in a 3-vector, 
then its corresponding state-space is also three-dimensional. An n-dimensional 
state vector will describe a motion in an n-dimensional state-space. 
 
 We saw how the state space representation relates to the description of a 
physical system otherwise described by a set of differential equations. We will 
now examine the relationship between state space and the system function of a 
network. The system function is, as we saw earlier, a function of the complex 
frequency s, representing the ratio of the Laplace transform of a response to the 
Laplace transform of the excitation causing the response. In this sense, we can 
look at all such functions as transfer functions. 
 
We have already seen that if the (network) model can be arranged as a set of 
interconnections among integrators, their outputs constitute a possible set of 
state variables. With this background, we will attempt to breakdown a function of 
the complex variable s into a set of relations that can be easily represented by 
integrators. 
 
We have also noted that the most general form of a system function is given by a 
real rational function of s, expressed as the quotient of two polynomials in s. 
  
  

H(s) = q(s) / p(s), where 
  

q(s) = bm(s-z1)(s-z2) .  .  .  (s-zm) 
p(s) = (s-p1)(s-p2)  .  .  .  .  (s-pn) 

  
 
Unlike in the study of other more general systems (such as in Control Systems), 
we have the advantage that network functions of passive networks are subject to 
certain constraints. The poles and zeros are simple, that is there are no higher 
order poles or zeros, and there are no poles or zeros on the right hand side of 
the s-plane. 
 
We can expand H(s) into partial fractions, so that each term corresponds to a 
single integrator, whose output can then be considered as a state variable. We 
will, for completeness, examine the general case of how to obtain a set of state 
variables, given a real rational function of s. 
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This is of course a very mechanical treatment, giving no physical insight into the 
problem being studied. It is much more useful to recognise suitable physical 
quantities as the state variables, and obtain the equations governing their 
relationships.  
 
We saw that there are many alternate ways of describing the behaviour of a 
dynamic system, using different state variables. They are all transformations of 
each other, and most have no physical significance. In the case of the simple 
pendulum considered earlier, we could have derived the state space description 
using the angular displacement and the angular velocity as state variables. 
These obviously have physical significance. But an equally valid, from a 
representational point of view, pair of state variables would have been the sum of 
the angular displacement and the angular velocity as one variable and their 
difference as the other. This combination does not make physical sense.  
 
In engineering, we would always prefer to formulate our equations in terms of 
variables that have some physical significance. This has a number of 
advantages, including the ability to make reality checks and providing us with an 
insight into the problem under study. 
 
We noted earlier on that the state variables contain all the information about the 
past and the present necessary for the prediction of future behaviour. There are 
many ways in which these can be visualised. They are connected with “memory”, 
and they are in some manner associated with energy storage. In linear electrical 
circuits, only inductors and capacitors can store energy (Resistors dissipate 
energy, but cannot store it.)  
 
We have a choice in the selection of state variables with physical significance. 
We could select either (flux φ, charge q) or (current i, voltage v) as our preferred 
set of variables. Other combination including different combinations of these are 
of course possible as we saw earlier, but these seem to offer alternatives with 
real physical significance. 
 
We may use the methods of nodal and mesh analysis, or alternatively, energy 
function methods to obtain the state equations of a system. 
 

2.1.1 State-space 
 
A second order system (with no inputs) may be represented by a set of two state 
equations as follows: 
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2111
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We can draw a block diagram of these two equations, using two integrators, as 
follows: 

f1(x1,x2)

f2(x1,x2)

x1

x2

dx1/dt

dx2/dt

 
 
 
The outputs of the integrators may be taken as a possible set of state variables. 
 
We can then visualise this system as moving in a two-dimensional space as 
shown below. 
 

X1

X2

X2(t)

X1(t)

t

 
 
A point [x1(t), x2(t)] on the path represents the state of the system at time t. It is 
obvious that the system shown above would be non-linear, and be a rather 
complex one. 
 
The simple harmonic motion represented by the set of linear equations 
 

dx1 / dt = x2 
 
 dx2 /dt = -ωn

2 x1 
 
considered earlier would be represented on the state-space as follows: 
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X1

X2

 
 
A trajectory on a three-dimensional state-space may be visualised as follows: 
 
 

X1

X2

X3

 
 
Unfortunately, it is not possible to directly represent spaces of higher dimensions 
on a two-dimensional surface, but you should not have much difficulty in 
visualising the extension of the concept of state – space to n dimensions. 
 

2.1.2 Obtaining state variables and state equations from a 
transfer function 

 
Consider the general form of a transfer function: 
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Let the function H(s) denote a relationship between two functions U(s) and Y(s) 
such that: 
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Dividing by sn and rearranging, 
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The implementation of these using integrators is shown in the figure. 
 
From this, we can write down the state space description by inspection, if we 
chose the outputs of the integrators as the state variables. 

b0
Σ

Σ
b1

bn-2
Σ

Σbn-1

Σ

a0

a1
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bn
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u(t)

y(t)

x1

dx1/dt

x2

xn-1

xn

dx2/dt

dxn-1/dt

dxn/dt

.

 



62 A systems approach to circuits, measurements and control 

 
 

ubxax
ubxxax

ubxxax
ubxxax

n

nn

nn

nn

010

1111

23122

12111

....

+−=
++−=

++−=
++−=

−

−−

−−

&

&

&

&

 

 
The output y is given by: 
 

ubxy 01 +=  
 
In matrix form, we can write: 
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In concise form: 
 

DUCXY
BUAXX

+=
+=&  

 
As has been repeatedly emphasised, there is no unique set of state variables, 
and what we defined in the above analysis is just one possible selection of state 
variables, given the function H(s). We will now examine one other possible form, 
obtained by the partial fraction expansion of the given function. 
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Let us first assume that all the poles are distinct and real. Then, we can write: 
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Considering each term, 
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This leads to: 
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If we again select the outputs of the integrators as the state variables: 
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In matrix form: 
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This is again of the form 
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BUAXX
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even though the structure of the matrices are different. 
 

2.1.3 Resistors, inductors and capacitors 
 
Consider the following circuit elements: 
 
 Resistance R (ohms) 
 Conductance G (mhos) (=1/R) 
 
 Capacitance C (farads) 
 Elastance S (darafs) (=1/C) 
 
 Inductance L (henrys) 
 Inverse inductance Γ 

(inverse henrys) (=1/L) 
 
For the class of linear elements, we have the following relationships: 
 
Defining relationships: 
 

φφ Γ==
==
==

iLi
SqvCvq
GviRiv
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,

 

 
i-v relationships: 
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The relationships for capacitors and inductors may also be written in integral form 
as: 
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Relationships derived from resistances do not yield state equations, as they can 
only be algebraic equations and not differential equations. If we select v-i 
relationships as the relationships of choice (this is not necessary, we could 
equally well select others such as flux – charge relationships), we are led 
naturally to select: 
 

voltages across capacitors 
and 

currents through inductors 
 
as the state variables of choice. 
 
[In the generalised theory of dynamic systems, there are analogous choices to be 
made for the representation of physical phenomena in mechanical systems, 
thermodynamic systems and fluidic systems] 

2.1.4  Formulation of state equations by nodal and mesh 
analysis 

 
We will demonstrate the derivation of state equations through nodal and mesh 
analysis through a simple example. Consider the network shown below: 

R1 C1

R2C2L
e

i1 i3i2

.  
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Writing the mesh equations: 
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Differentiating the second and third equations to transform from integral to 
differential form, these may be rewritten as: 
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From the above, it appears that there are two variables with second derivatives. 
In fact, there is only one, (i1-i2). We need to recognise this fact, that there is only 
one variable with a second derivative. 
 
If we rewrite the equations using (i1-i2) as a single variable (and also abandoning 
(say) i1 as an independent variable): 
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As there are no derivatives of i2, it can be eliminated (by substituting for i2 from 
the third equation, into the other two) to yield: 

0))(()(

)()(

313223212121

32123121211

=−+++−−

=++−+−
••

•

iCiRCiCCiiCLC

eiRRCiRiiLiiR

&
876

&
876

 

 
If we now define: 
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We get the state equations: 
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Rearranging, we get: 
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In matrix form, 
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where: 
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We could, alternatively, have started by writing the nodal equations, and obtained 
the state equations in terms of the node-pair voltages and their derivatives. 
 
Another approach (to both nodal and mesh analysis) is to define the state 
variables in terms of physical variables that correspond directly to the state – the 
currents through inductors and voltages across capacitors. This would be the 
most direct approach, and we will repeat the analysis of this circuit using his 
approach. (This is a method that can be carried across to the study of other 
systems such as mechanical, thermal and fluid systems, which all have 
identifiable “through” variables and “across” variables) 
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Writing the nodal equations in terms of i1, v1 and v2, we have: 
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We also have the additional relationship: 
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Rearranging, we have: 
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This is in the standard form. Note how easily the state equations could be 
obtained, if we make a proper choice of state variables. 
 
We could equally well have obtained the state equations by writing the mesh 
equations. 
 
We can now formally state the procedure for writing down the state equations as 
follows: 
 

1. Select the currents through inductors and voltages across capacitors as 
the state variables. 

2. Write the loop (node-pair) equations for all loops (node-pairs) that 
contain (are connected to) at least one storage element (that is, an 
inductor or capacitor) 

3. If there are n storage elements and only m (m<n) loop (node-pair) 
equations, then there will be an additional (n-m) relationships between 
the variables we have chosen. Altogether, there will be n equations. 

2.1.5 Energy functions 
 
We have defined the loop-based energy functions as: 
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where l is the number of independent loops and the node-pair-based energy 
functions as: 
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where n is the number of independent node-pairs. 
 
L, R and S represent the loop inductance, resistance and elastance (reciprocal 
capacitance) while C,G and Γ represent the node capacitance, conductance and 
reciprocal inductance matrices. 
 
Each of these energy functions is a positive semi-definite quadratic form. Their 
positive-semi-definiteness may be established qualitatively by considering that 
the loop and node-pair matrices in a passive network have to be positive-semi-
definite because in such a network, the energy stored or dissipated cannot be 
negative. 
 
Considering the energy functions derived from the loop equations, if we set 

1
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then we get: 
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Similarly, starting with the energy functions defined using node-pair equations 
and setting 
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we get 
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We may derive special cases from these results. For example, for an LC 
network, F is zero and for an RC network, T is zero. Therefore: 
 

networkRCaforsVFZ
networkLCanforsVsTZ

/
/

11

11

+=
+=

 

Similar results may be obtained for the driving point admittances using the node-
pair-based energy functions. Obviously, these are not the methods used for 
evaluating driving point impedances and admittances, as they lead to complex 
expressions. However, the insight provided by this analysis is very useful. 
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2.1.6 Formulation of state equations using energy 
functions 

 
We have already briefly come across the use of energy functions in the previous 
lecture, where we referred to the modelling of the capacitor microphone. Let us 
now look at it in a little more detail. 

Conservative systems 
 
We will first consider conservative systems, that is, systems without energy 
sources or sinks, and later go on to consider non-conservative systems. 
 
Example 1 
 
Consider a very simple example, with only one inductor and capacitor as shown. 
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Let us define T as the total system kinetic energy and V as the total system 
potential energy. We will call the total energy E 
 
In terms of the charge q and its derivative, we can write: 
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Since the system is conservative,  
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In terms of the flux linkage λ and its derivatives: 
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We could use Lagrange’s energy balance equation for conservative systems, 
which states that: 

0=
∂
∂

+
∂
∂

−







∂
∂

nnn q
V

q
T

q
T

dt
d

&
 

where  
T = total system kinetic energy 
V = total system potential energy 
n = 1, 2, … refers to the independent   coordinates in the system 
qn = generalised coordinate 

nq& = generalised velocity 
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Example 2 
 
Let us consider one more example: 
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We will consider the flux linkages λ associated with each of the elements as 
candidates for the selection of independent coordinates.  
 
[The meaning of a flux linkage associated with a capacitor is not quite clear. We 
will assume that a capacitor is in parallel with an infinite inductor, carrying zero 
current, but with a flux linkage λ such that its time derivative is equal to the 
voltage across the capacitor.] 
 
We could select (say) λ1 and λ2 as our coordinates (but not λ2 and λ4, as they are 
not independent) 
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Evaluating with respect to λ1 we have: 

)(1

0

12
31

1

11
1

11
1

λλ
λ

λ

λ
λ

λ
λ

−−=
∂
∂

=
∂
∂

=








∂
∂

=
∂
∂

L
V

T

CT
dt
d

CT

&&
&

&
&

 



74 A systems approach to circuits, measurements and control 

 
This yields the state equation: 
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Similarly, evaluating with respect to λ2, we get: 
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leading to the state equation: 
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These two equations may now be expressed in standard form by defining a new 
set of state variables as: 
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Non-conservative systems 
 
Let us now consider non-conservative systems. The complete Lagrange’s 
equations for such systems are as follows:  
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where  
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T = total system kinetic energy 
D = total system dissipation factor, and is defined as one half the rate at which 
energy is dissipated in the system as heat. 
V = total system potential energy 
n = 1, 2, … refers to the independent   coordinates in the system 
Qn = generalised forcing function relative to coordinate n 
qn = generalised coordinate 

nq& = generalised velocity 
 
To obtain the forcing function relative to the nth coordinate: 
 
Suppose the system has all its coordinates q1, q2, .   .   .   . , qn frozen when the 
system is in an arbitrary configuration. Now, let one coordinate qi increase by δqi. 
Let δwi be the work done by all external forces in the system during the 
displacement δqi. Then,  
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Example 3 
 
Let us consider the following example: 
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We will choose λ1, λ2 and λ3 as the coordinates. 
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Now let us write down the Lagrange’s equations: 
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Substituting in the Lagrange’s equation: 
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From the above, it appears that there are many state variables, as the first 
derivatives of λ1, λ2 and λ3 and the second derivative of λ1 appear in the above 
equations. However, a careful study reveals that most of them can be eliminated: 
 
Substituting from equations (1) and (2) into equation (3) yields: 
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which correspond to only two state equations, as should have been expected for 
a system with only two energy storage elements. 
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2.2 Transformations, canonical forms and eigen-values  

Introduction 

We have seen how the dynamics of a linear, time invariant network may be 
represented by a set of linear state-space equations, describing the behaviour of 
the system as well as its output. 

Consider the following set of linear equations: 

 d/dt [X] = AX + BU 
 d/dt [Y] = CX + DU 

where X represents the state vector and Y is the output. Matrix A is the system 
matrix. Matrices B, C and D represent the influence of the input on the state, the 
influence of the state on the output and of the input on the output, respectively. 

[We have referred to this as a standard form of representation. A standard form 
is technically known as a canonical form.] 

The state vector X is not unique. 

An infinite number of linear transformations of X exist, which are equally valid 
representations of the system. 

Let us consider a simple example. 

 dx1/dt = x1 + x2 
 dx2/dt = x1 – x2 

This is a simple second order system, with no excitation. 

Now consider a new set of variables z1 and z2 such that: 

 z1 = x1+ 0.4142 x2 
 z2 = x1 – 2.4142 x2 

Then, we have:  

 x1 = 0.8536 z1 + 0.1464 z2 
 x2 = 0.3536 z1 - 0.3536 z2 
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 Substituting, we get: 

 dz1/dt = 1.414 z1 
 dz2/dt = -1.414 z2 

What we have found is that the two systems  

dx1/dt = x1 + x2 
dx2/dt = x1 – x2 

and 

dz1/dt = 1.414 z1 
dz2/dt = -1.414 z2 

are equivalent. 

We have used a somewhat funny-looking transformation from X to Z, and ended 
up with an unusual set of equations in Z. It is unusual because the two equations 
in Z are uncoupled from each other. You will suspect that the transformation we 
used is not an arbitrary one, but a very special one to yield such a result. On the 
other hand, it also illustrates that there can be any number of transformations (as 
long as the two relations are independent of each other) yielding new sets of 
state variable, which are equally valid descriptions of the system. 

The particular form of the equation that we obtained by this unusual 
transformation is known as a diagonal matrix, and is of great significance in the 
study of dynamic systems. This form of the system equations was made possible 
because of a particular property of the system we had chosen, that it has distinct 
characteristic roots or in other words, distinct eigen-values. Remember that we 
found that the roots of system functions of RLC networks are simple, so that we 
will not come across systems with multiple roots in the study of such systems. 

We will now look at a more systematic method for the transformation of system 
matrices with distinct eigen-values to diagonal form. You will find that it is not 
possible to transform matrices with multiple eigen-values to diagonal form. 

The Jordan canonical form is a more inclusive form (that includes the diagonal 
form for matrices with distinct eigen-values) that allows us to have a common 
standard or canonical form, similar to any given matrix. Matrices are said to be 
similar if they have the same eigen-values.  
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2.2.1 Eigen-values and eigen-vectors 
 
Eigen-value is a hybrid word, made up of the German ‘eigen’ (meaning 
‘characteristic’) and the English ‘value’. 
 
As its name implies, its value is characteristic of the system that it represents. 
We also have other related concepts such as the characteristic equation, 
characteristic roots etc. 
 
Eigen-values are characteristic of a matrix. In the case of the system equations 
that we studied, the matrix is the system matrix A. 
 
The eigen-values are given by the solution of the equation: 

0=− IA λ  
We could of course look at this as the solution to the problem of finding a (non-
trivial) solution to: 

xAx λ=  
 
Let us consider the example that we already have: 
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The eigen-values are +1,414 and –1,414 
 
These correspond to the transformed equation that we obtained, namely, 
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or, in matrix form: 
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We can obtain the eigen-values of a matrix using the function eig in MATLAB. 
The following is a transcript of a MATLAB session, which calculates the eigen-
values of the above matrix: 
 
A=[1 1; 1 –1] 
 
A= 

1  1 
1 -1 

 
lamda=eig(A) 
 
lamda= 
 -1.4142 
  1.4142 
 
Now let us try some slightly more complex examples: 
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Using MATLAB, let us evaluate their eigen-values: 
 
B={1 1 0; 0 1 1; 0 0 1] 
 
B= 
 1 1 0 
 0 1 1 
 0 0 1 
eig(B) 
 
ans = 
 
 1 
 1 
 1 
C=[2 2 1; 1 2 2; 1 1 2] 
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C= 
 2 2 1 
 1 2 2 
 1 1 2 
 
eig(C) 
 
ans = 
 4.6274           
   0.6863 + 0.4211i 
    0.6863 - 0.4211i 
 
These examples illustrate two other phenomena. Matrix B has three coincident 
eigen-values, while C has one real eigen-value and a pair of complex eigen-
values, which are conjugates of each other. 
 
We are now ready to look at another concept, that of eigen-vectors. 
 
Associated with each distinct characteristic value (eigen-value) λ, there is a 
characteristic vector (eigen-vector), determined up to a scalar multiple. Earlier, 
we used the relationship 

xAx λ=  
 
to find the eigen-values λ, so that x is non-trivial. We will now find these values of 
x, corresponding to each eigen-value. 
 

0)( =− xIA λ  
for the example considered. 
 
With λ1 = √2, the equations are: 
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From either of these, we can obtain 
 

21 4142.2 xx =  
 
[1/0.4142 is equal to 2.4142, so that both equations yield the same relationship] 
 
If we select x2 = 1, then x1 = 2.4142. 
 
If we normalise this vector, such that the sum of their squares is equal to 1,  
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If we now start with the other eigen-value  
λ2 = -√2, we get: 
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Either of these will yield the relationship 

21 4142.0 xx −=  
 
We can, up to a scalar multiple, assume 
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After normalisation, we get: 
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We have now calculated the two eigen-vectors of the matrix A, up to (a) scalar 
multiple. They are: 
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We can use MATLAB to obtain the eigen-vectors of a matrix. Let us illustrate this 
using the example used: 
 
A=[1 1; 1 –1] 
 
A = 

1 1 
1 -1 

 
[V,D] = eig(A) 
 
V = 

0.3827 -0.9239 
-0.9239  -0.3827 
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D = 
 -1.4142           0 

0 1.4142 
 
[Note: When the function eig is used with two expected matrix responses as 
here, the first answer returned is an array of eigen vectors and the second is a 
diagonal matrix with eigen-values on the diagonal.] 
 
Note that the eigen-vectors computed by MATLAB are different from the ones we 
obtained, by a factor of (-1). This is because they are determined only up to a 
scalar multiple, and even normalisation leaves us with this ambiguity.  
 
>> B=[1 1 0;0 1 1; 0 0 1] 
 
B = 
 
     1     1     0 
     0     1     1 
     0     0     1 
 
>> C=[2 2 1; 1 2 2; 1 1 2] 
 
C = 
 
     2     2     1 
     1     2     2 
     1     1     2 
 
>> [P,Q]=eig(B) 
 
P = 
 
    1.0000   -1.0000     1.0000 
         0      0.0000     -0.0000 
         0          0      0.0000 
 
Q = 
 
     1     0     0 
     0     1     0 
     0     0     1 
 
>> [R,S]=eig(C) 
 
R = 
 
   0.6404                0.7792                0.7792           
   0.6044             -0.4233 + 0.3106i   -0.4233 - 0.3106i 
   0.4738             -0.1769 - 0.2931i   -0.1769 + 0.2931i 
 
S = 
 
   4.6274                   0                   0           
        0              0.6863 + 0.4211i      0           
        0                  0               0.6863 - 0.4211i 
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[Note that this algorithm has not been able to compute the eigen-vectors of the 
matrix B, as it has multiple eigen-values. An indication of this may be obtained by 
invoking the function condeig, which returns a vector of condition numbers for the 
evaluation of eigen-vectors.  For a well-conditioned matrix, it should have values 
close to unity. 
 
>> condeig(B) 
 
Warning: Matrix is close to singular or badly scaled. 
Results may be inaccurate. RCOND = 2.465190e-032. 
> In D:\matlabR12\toolbox\matlab\matfun\condeig.m at line 30 
 
ans = 
 
  1.0e+031 * 
 
    0.0000 
    2.0282 
    2.0282 
 
] 

2.2.2 Diagonal matrices 
 
Let us assume that the matrix A has distinct characteristic roots or eigen-values 
λ1, λ2, λ3.  .  . , λn. Let us further assume that the eigen-vectors associated with 
these eigen-values are x1, x2, x3, .  .  . , xn. We will further assume that the eigen-
vectors have been normalised, so that inner product of each eigen-vector and 
itself is unity: 
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Consider the matrix T formed by assembling the vectors xi as columns, as 
follows:  
 

[ ]





















=

=

n
nnn

n

n

n

xxx

xxx

xxx

xxxxT

..
.....

..

..

|...||

21

2
2
2

1
2

1
2
1

1
1

321

 

 



86 A systems approach to circuits, measurements and control 

T’, the transpose of T, would then be the matrix obtained by arranging the eigen-
vectors as rows: 
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Since the eigen-vectors are orthogonal, we have: 
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 [T is thus an orthogonal matrix.] 
 
 
As each of the xi are eigen-vectors, we have:  
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T’AT has eigen-values on the diagonal, and zero everywhere else. It is a 
diagonal matrix. 
 
Let us define Λ (lamda) = T’AT 
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Pre-multiplying by T and post-multiplying by T’, we have: 
 
 TΛT’=TT’ A TT’ = A 
 
For the examples we considered earlier, from the MATLAB simulation, we had: 
 
A = 
 
     1     1 

1 -1 
 
T=   

0.3827    -0.9239 
   -0.9239    -0.3827 
 
Since T is symmetric, T’ = T. and we have: 
 
lamda = 
 
   -1.4142   -0.0000 
   -0.0000    1.4142 
 
This, as expected, is a diagonal matrix with the eigen-values on the diagonal. 
We can now get back A as TΛT’: 
 
ans = 
 
    1.0000    1.0000 

1.00 -1.0000 

2.2.3 The Jordan canonical form 
 
We saw how symmetrical matrices with real eigen-values may be transformed to 
diagonal form.  
 
The following are two important properties of real symmetric matrices: 
 

• The characteristic roots (eigen-values) of a real symmetric matrix are 
real. 

 
• The characteristic vectors (eigen-vectors) associated with distinct 

characteristic roots of a real symmetric matrix are orthogonal. 
 
In practice, we do come across matrices with complex eigen-values. What 
difference does it make? 
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Before we proceed, we will need to agree on certain notations. 
 
We have already used the terms symmetric matrix and transpose of a matrix. 
 
1. A symmetric matrix is one where  
 

jiij aa =  
 
2. The transpose A’ of a matrix A is given by: 
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 [For a symmetric matrix, A=A’] 
 
3. When the elements aij of a matrix are real, we call such a matrix a real matrix. 
 
4. The inner product of two vectors x and y is written as (xy), and is an important 
scalar function of x and y. It is defined as 
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5. The complex conjugate of a complex variable x is denoted by placing a ¯ 
over x. 
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[For complex vectors, the product ),( yx is of greater significance than the usual 
inner product (x,y)] 
 
6. Corresponding to the symmetric real matrices where A = A’, the significant 
form for complex matrices is called Hermitian matrices, where: 

*' AAA ==  
 
[Parallel with the orthogonal matrices in the study of symmetric matrices, we 
have the concept of unitary matrices in the study of Hermitian matrices, where 
T*T = I] 
 
Let us now consider an example of a non-symmetric matrix with real coefficients: 
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As before, we will look at a MATLAB transcript. 
 
» A=[1 -2 ; 2 1] 
 
A = 
 
     1    -2 
     2     1 
 
» [T,D]=eig(A) 
 
T = 
 
  -0.7071            -0.7071           
        0 + 0.7071i        0 - 0.7071i 
 
 
D = 
 
   1.0000 + 2.0000i        0           
        0             1.0000 - 2.0000i 
 
» TINV= inv(T) 
 
TINV = 
 
  -0.7071                  0 - 0.7071i 
  -0.7071                  0 + 0.7071i 
 
» LAMDA=TINV*A*T 
 
LAMDA = 
 
   1.0000 + 2.0000i        0           
        0             1.0000 - 2.0000i 
 
» T*LAMDA*TINV 
 
ans = 
 
     1    -2 
     2     1 
 
» 
We first compute the matrix formed by the eigen-vectors (T) and one with the 
eigen-values as diagonal elements (D). Note that the eigen-values are a complex 
conjugate pair. We then find the inverse TINV of T. We then note that 

ATT 1−=Λ  
 
is the diagonal matrix with the eigen-values on the diagonal, the same as D. 
Finally, we can get back A as: 

1−Λ= TTA  
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[In this particular case, the inverse of T is equal to the transpose of its complex 
conjugate, but this is not so in general, unless there are only complex roots.] 
 
» CTRANS=ctranspose (T) 
 
CTRANS = 
 
  -0.7071                  0 - 0.7071i 
  -0.7071                  0 + 0.7071i 
 
» TINV=inv(T) 
 
TINV = 
 
  -0.7071                  0 - 0.7071i 
  -0.7071                  0 + 0.7071i 
 
Here, the transpose and the inverse are equal. 
 
We will consider one more example. 
 
 
» B=[1 2 3; 2 0 1; 1 2 0] 
 
B = 
 
     1     2     3 
     2     0     1 
     1     2     0 
 
» [T,D]=eig(B) 
 
T = 
 
  -0.7581            -0.3589 - 0.4523i  -0.3589 + 0.4523i 
  -0.4874            -0.2122 + 0.5369i  -0.2122 - 0.5369i 
  -0.4332             0.5711 - 0.0847i   0.5711 + 0.0847i 
 
 
D = 
 
   4.0000                  0                  0           
        0            -1.5000 + 0.8660i        0           
        0                  0            -1.5000 - 0.8660i 
 
» CTRANS=ctranspose(T) 
 
CTRANS = 
 
  -0.7581            -0.4874            -0.4332           
  -0.3589 + 0.4523i  -0.2122 - 0.5369i   0.5711 + 0.0847i 
  -0.3589 - 0.4523i  -0.2122 + 0.5369i   0.5711 - 0.0847i 
 
» TINV=inv(T) 
 
TINV = 
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  -0.5957 + 0.0000i  -0.5957 - 0.0000i  -0.5957           
  -0.2826 + 0.3820i  -0.1359 - 0.6071i   0.6474 + 0.0145i 
  -0.2826 - 0.3820i  -0.1359 + 0.6071i   0.6474 - 0.0145i 
 
The transpose and the inverse are not the same. 
 
» LAMDA=TINV*B*T 
 
LAMDA = 
 
   4.0000 - 0.0000i  -0.0000 - 0.0000i  -0.0000 + 0.0000i 
   0.0000 - 0.0000i  -1.5000 + 0.8660i  -0.0000 - 0.0000i 
   0.0000 + 0.0000i  -0.0000 + 0.0000i  -1.5000 - 0.8660i 
 
» T*LAMDA*TINV 
 
ans = 
 
   1.0000 - 0.0000i   2.0000 + 0.0000i   3.0000 - 0.0000i 
   2.0000 + 0.0000i        0 + 0.0000i   1.0000 + 0.0000i 
   1.0000 - 0.0000i   2.0000 + 0.0000i   0.0000 - 0.0000i 
 
Note that transpose of the complex conjugate of T and the inverse of T are quite 
different. However, we do have a systematic method for transforming a matrix to 
diagonal form. There is still one assumption we have made, that the eigen-values 
are distinct. 
 
Let us now look at the case where you get coincident eigen-values.  
 
We will re-examine the example we considered earlier: 
 
















=

100
110

011

C  

 
 
» C=[1 1 0; 0 1 1; 0 0 1] 
 
C = 
 
     1     1     0 
     0     1     1 
     0     0     1 
 
» eig(C) 
 
ans = 
 
     1 
     1 
     1 
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There are three coincident eigen-values, each equal to 1. If you attempt to find 
the eigen-vectors, you will find that x1 may take any value, but that the other two 
components are identically zero. MATLAB also gives the same result. 
 
» [T,D]=eig(C) 
 
T = 
 
    1.0000   -1.0000    1.0000 
         0    0.0000   -0.0000 
         0         0    0.0000 
 
 
D = 
 
     1     0     0 
     0     1     0 
     0     0     1 
 
T cannot be inverted, as its rank is only 1.  
 
We are now ready to introduce the Jordan canonical form. 
 
Definition 
 
Let us denote by Lk(λ) a k x k matrix of the form: 
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)(hL
 

 
[L1 would be equal to λ] 
 
It can be shown that there exists a matrix T such that 
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nkkk r =+++ ...21  

 
λ1,λ2,  .  .  .,λr are eigen-values with multiplicity k1, k2,  .  .   .  kr. 
 
This representation (that is T-1AT) is called the Jordan Canonical Form. 
 
The diagonal form we had for the case of distinct eigen-values obviously satisfies 
this condition.  
 
The matrix  
 
















=

100
110
011

C  

  
which we picked for study earlier on is already in this form. 
 
We will now consider another example. 
 
Consider  








 −
=

14
15

A  

 
The eigen-values of A are 3 and 3. We can then write down the Jordan canonical 
form of the matrix as: 









=

30
13

J  

 
This does not, however, tell us anything of the transformation T that will yield J 
from A, other than that: 

ATTJ 1−=  
 



94 A systems approach to circuits, measurements and control 

2.3 Solution of network equations 

Introduction 
 
Sparse matrices are an important phenomenon in engineering. They occur 
regularly in network problems, and so, special methods used in their solution are 
of importance to us. 
 
Let us consider a simple network with three nodes (that is, two node pairs) with 
each node connected to the other two. If we write the nodal equations, we will 
have  
 
 YV = I 
 
Where Y is a 2 x 2 admittance matrix and V and I are 2 x 1 vectors. All elements 
of Y will be full (or have a non-zero entry.) However, if we take a circuit with ten 
nodes, with each node connected to three others, we will have a 9 x 9 
admittance matrix with only a maximum of 36 non-zero elements, out of a total of 
81. With a large network of (say) 1000 x 1000, it is possible to have less than 
5000 non-zero elements, out of a total of one Million entries.  This is one instance 
of how sparse matrices arise. 
 
Common methods of solving matrix equations are quite inefficient in dealing with 
sparse matrices, and special methods are in use, which exploit their special 
features 
 
We will first examine the most obvious solution of the equation we considered 
earlier: 
 
 YV=I 
 V = Y-1 I 
 
where Y-1 is the inverse of Y. Matrix inversion is computationally very inefficient, 
even for a full matrix, for we have to evaluate the co-factor of each element of the 
matrix. This means that a (n-1) x (n-1) determinant has to be evaluated for each 
of the n2 elements of the matrix, that is a total of (n-1)n! multiplications..  
 
We will then look at Gaussian elimination as an algorithm for the solution of a 
matrix equation. We will also look at how equation ordering affects the accuracy 
of the solution.  
 
Finally, we will look at LU factorisation and Cholesky factorisation 
 
 



Chapter 2 – State and state space 95 

We have already examined the role of equation reordering and pivoting as a 
means of improving the accuracy of computation. When considering sparse 
matrices, we also need to be concerned about the need to conserve sparsity in 
the solution process, We have seen how inversion tends to almost completely fill 
up an originally sparse matrix, and that both Gaussian elimination and LU 
factorisation sometimes introduce new non-zero elements.  
 
If we are interested in sparsity (as a means of reducing both storage 
requirements and computation time), we should consider special reordering 
schemes directed towards conserving sparsity. There are a variety of such 
schemes, each with its own merits and demerits. Some are very simple, and can 
be implemented with minimum time and effort, but are not very effective. They 
can be used when we are interested in only one run of the solution of a set of 
equations. More complex methods require relatively more effort, and can be 
justified when we have to resort to repeated runs.  
 
A reordering scheme for sparse matrices to be useful will have to incorporate 
reordering techniques for both reduction of round off errors and for the 
preservation of sparsity. 
 
Finally, we examine how a sparse matrix can be stored, so as to exploit its 
special features. In particular, we need to develop techniques of storage and 
retrieval that will reduce the total storage requirements while facilitating quick and 
easy data access –that is both writing and reading. These methods are together 
known as sparsity programming 

2.3.1 Solution of linear state equations through  
Laplace transformation 

 
Let us consider the system of state space equations: 
 

BuAxx +=&  
 
Laplace transformation of these yields: 
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The solution consists of two parts: 

 
• { })0()( 11 xAsIL −− − , which is the contribution made by the initial 

conditions. This is a transient, but it is not the complete transient. 
 

• { })()( 11 sBUAsIL −− − , which is the contribution made by the inputs to 
the system. 

 
This contribution consists of two parts itself, a transient term and a steady state 
term. Both these contain the term 1)( −− AsI . 
Now, 

AsI
AsIadjAsI

−
−

== − )()( 1  

AsI −  is a polynomial in s, of degree n. 

Each element in )( AsIadj − is a polynomial in s, of degree (n-1) or less.  
 

Each element of 
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 can be split up into partial fractions of the form: 
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if there is one root of multiplicity q. 
 
These λ’s are the eigen-values of the system, and 0=− AsI is the 
characteristic equation of the system. The eigen-values are the roots of the 
characteristic equation. AsI − is known as the characteristic polynomial. The 
eigen-values may be either real, or they occur in complex conjugate pairs. 
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Example: 
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The Laplace transform of the response due to the initial conditions = 
)0()( 1xAsI −−  
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The Laplace transform of the response due to the input = 

)()( 1 sBUAsI −−  
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Then, the transform of the total response  
= The transform of the response due to initial conditions 
+ The transform of the response due to the input. 
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In the time domain, the response = 
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2.3.2 Solution of transient equations 
 
We have studied about the methods for the solution of linear algebraic equations 
that arise in the steady state solution of networks. We will now look at how 
differential equations describing the transient behaviour of networks may be 
handled. 
 
Earlier, we studied about the dynamic representation of networks, through the 
formulation of state space equations. Our treatment of electrical circuits was 
limited to time-invariant systems, in that we assumed that parameters such as 
the resistance, inductance or capacitance of an element were not functions of 
time. We will continue with this assumption, and restrict our treatment to time-
invariant systems. 
 
Analytical methods for the solution of systems of differential equations exist only 
for a limited class of simple, linear equations. For the study of more complex and 
non-linear systems, we need to convert the differential equations to difference 
equations, and then apply numerical techniques for their solution. We will study 
analytical methods for the solution of systems of differential equations and also 
some numerical techniques for the solution of systems of difference equations. 
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Analytical solution of linear state equations 
 
We have already noted the relationship between the state space representation 
and the s-plane representation of a system. One approach to the solution of state 
equations is through its Laplace transform. 
 
Another approach would be through the evaluation of the matrix exponential. 
 
As is to be expected, both these solutions are strongly influenced by the eigen-
values of the system. 
 

Numerical solution of state equations: Solution of linear state 
equations through the matrix exponential 
 
We have seen that the solution to 

BuAxx +=& is 
 

{ } { })()()0()()( 1111 sBUAsILxAsILtx −−−− −+−=  
 
Let  { } )()( 11 tAsIL Φ=− −−   
 
Therefore, (by the convolution theorem): 
 

∫ −Φ+Φ=
t

dButxttx
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We now need to evaluate Φ(t). 
 
We will assume a power series solution for the homogeneous equation Axx =& ,  
of the form: 
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Equating coefficients of powers of t, we have: 
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We also have, by substitution t=0 in our power series, 
 
a0 = x(0) 
 
This gives us the solution: 
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The solution of the complete equation 

BuAxx +=& is: 
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Matrix inversion 
 
We will consider the following equation, which we have already encountered: 
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Let us assume some numerical values for each Gi and for is.  
G1 = g3 = G5 = 1, 
G2 = G4 = G6 = 2, 
Is=1 
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Then the equations would be: 
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To compute the inverse of this matrix, we need to first compute its determinant: 
 
∆ = 5(25-4) + 2(-10-4)-2(4+10) = 49 
 
We then have to compute the co-factor of each element ∆ij to obtain: 
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Now, writing  
 
 V=G-1 I,  
We have: 
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We can use MATLAB to obtain this result using: 
 
G=[5 -2 -2;-2 5 -2;-2 -2 5] 
 
G = 
 
     5    -2    -2 
    -2     5    -2 
    -2    -2     5 
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is=[1;0;0] 
 
is = 
 
     1 
     0 
     0 
 
v=inv(G)*is 
 
v = 
 
    0.4286 
    0.2857 
    0.2857 
 
We can use the “spy” instruction to plot the non-zero elements of G: 
 
Spy(G) 
 

 
 
and of G-1:  
 
 
Spy(inv(G)) 
 
 

 
 
They are both full matrices and nothing (in terms of storage etc.) is gained or lost. 
 
Now lets look at the next example we considered, of three such networks 
connected in cascade. The non-zero elements of the original matrix and of its 
inverse are as shown: 
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G=[5 -2 -2 0 0 0 0;-2 5 -2 0 0 0 0; 
-2 -2 10 -2 -2 0 0;0 0 -2 5 -2 0 0; 
0 0 -2 -2 10 -2 -2;0 0 0 0 -2 5 -2; 
0 0 0 0 -2 -2 5] 
 
G = 
 
     5    -2    -2     0     0     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    10    -2    -2     0     0 
     0     0    -2     5    -2     0     0 
     0     0    -2    -2    10    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0     0     0    -2    -2     5 
 
>> spy(G) 
 

 
 
>> spy(inv(G)) 
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>> inv(G) 
 
ans = 
 
  Columns 1 through 5  
 
    0.3214    0.1786    0.1250    0.0714    0.0536 
    0.1786    0.3214    0.1250    0.0714    0.0536 
    0.1250    0.1250    0.1875    0.1071    0.0804 
    0.0714    0.0714    0.1071    0.2857    0.1071 
    0.0536    0.0536    0.0804    0.1071    0.1875 
    0.0357    0.0357    0.0536    0.0714    0.1250 
    0.0357    0.0357    0.0536    0.0714    0.1250 
 
  Columns 6 through 7  
 
    0.0357    0.0357 
    0.0357    0.0357 
    0.0536    0.0536 
    0.0714    0.0714 
    0.1250    0.1250 
    0.3214    0.1786 

0.1786 0.3214 
0.1787  

>> nnz(G) 
 
ans = 
 
    25 
 
>> nnz(inv(G)) 
 
ans = 
 
    49 
 
We see that the original matrix had only 25 non-zero elements while the inverse 
has 49 non-zero elements, and is full. 
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Gaussian elimination 
 
We will study this algorithm through the example we have been considering: 
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Step 1: Divide the first row by its diagonal element: 
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Eliminate v1 from the other equations by subtracting the relevant multiples of 
equation 1 from the others: 
 
















=
































−−−
−−−

−−

5/2
5/2
5/1

5/455/420
5/425/450

5/25/21

3

2

1

v
v
v

 

 
We now repeat the process with the second row, that is first, make the diagonal 
element unity, then eliminate the second variable from the third equation: 
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Simplifying: 
 
















=































−
−−

3/2
21/2
5/1

3/700
3/210
5/25/21

3

2

1

v
v
v

 

 
Now, normalising the last equation, we have: 
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This gives the results as: 
 
V3= 2/7 
V2=2/21+2/3 V3 = 2/21+ 4/21 =2/7 
V1= 1/5+2/5 V2 + 2/5 V3 = 1/5 +8/35 = 3/7 
 
We are now in a position to attempt to write down the general algorithm. 
Consider the (n x n) matrix A and (n x 1) vectors x and b, where x is the 
unknown. 
 
Anxnxnx1 = bnx1 
 
Our strategy is to eliminate x1 from all the (n-1) equations, other than the first. To 
do this, we first divide the first equation throughout by a11, so that the revised a11 
is equal to 1.  
 
 For i = 1 to n:  
 

a1i = a1i / a11 
  b1 = b1 / a11 
 
Then, for each of the rows 2 to n, we subtract ai1 times the first row from each 
term, in other words: 
 
 For i = 2 to n: 
 
  bi = bi - ai1 x b1 
 
  For j = 1 to n: 
 
   aij = aij – ai1 x a1j 
    
This would mean that x1 is eliminated from all but the first equation, so that we 
are left with (n-1) equations in (n-1) unknowns. We can then repeat the same 
algorithm for the new (n – 1) x ((n – 1) matrix. Finally, we will be left with only one 
equation, corresponding to the last variable xn: 
 
 xn = bn 
 
The rest of the algorithm consists of the back-substitution process, whereby xn-1 
is calculated using the known value of xn, and then xn-2 is calculated, and so on 
until we obtain all values up to x1. 
  
 x n-1 = b n-1 – a n-1,n  x n 
  
For the general case: 

1.,..,.2,1,
1

−−=−= ∑
+=

nnixabx
n

ij
jijii
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This algorithm suffers from the disadvantage that the solution has to be repeated 
from the very beginning even when the matrix A has not changed at all, but only 
the vector b has changed. We can overcome this difficulty by actually not 
carrying out the operations on b during the forward reduction, but keeping a 
record of the necessary operations. This philosophy has lead to the development 
of algorithms such as the LU factorisation.  
 
The other main problem is that of ill-conditioned or badly ordered matrices.  
 
Re-ordering the equations (row pivoting) or the variables (column pivoting) can 
help to resolve problems with bad ordering.  
 
LU Factorisation 
 
We will consider the same example as before: 
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We would wish to be able to avoid some of the disadvantages of Gaussian 
elimination, in particular, the necessity to re-do all the computations in case of 
having to estimate [v] for a different [i], A remaining the same. 
 
Let us assume that we van find two matrices L and U such that: 
 
L*U = A 
 
L and U being lower triangular and upper triangular, respectively. Then, it would 
be easy to compute x satisfying: 
 
 L*U*x = b 
  
in two steps. First we find y such that: 
 
 L*y = b 
 
Then, x such that: 
 
 U*x = y 
 
For the example chosen: 
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We can now write down each of these terms, almost by inspection: 
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We have now completed the computation of the factored form: 
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We can check whether the factorisation is correct by multiplying L by U using 
MATLAB: 
 
L=[1 0 0;-2/5 1 0;-2/5 -2/3 1]; 
U=[5 -2 -2;0 21/5 -14/5;0 0 7/3]; 
A=L*U 
A = 
 
    5.0000   -2.0000   -2.0000 
   -2.0000    5.0000   -2.0000 
   -2.0000   -2.0000    5.0000        
 
We can also use MATLAB to perform the LU factorisation: 
 
[L,U]=lu(A) 
 
L = 
 
    1.0000          0           0 
   -0.4000     1.0000       0 
   -0.4000    -0.6667     1.0000 
 
 
U = 
 
    5.0000    -2.0000    -2.0000 
         0      4.2000     -2.8000 
         0          0       2.3333   
 
When we need to optimise the use of storage, it is possible to store all the values 
in one matrix, as it is not necessary to store either the zeros or the 1s. There is 
also a distinct MATLAM command for this:           
 
lu(A) 
 
ans = 
 
    5.0000   -2.0000   -2.0000 
    0.4000    4.2000   -2.8000 
    0.4000    0.6667    2.3333             
 
Let us now see the effect of LU factorisation on a sparse matrix. 
We will again use the example we considered earlier. 
 
A = 
 
     5    -2    -2     0     0     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    10    -2    -2     0     0 
     0     0    -2     5    -2     0     0 
     0     0    -2    -2    10    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0     0     0    -2    -2     5 
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spy(A) 

0 2 4 6 8 
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nz = 25  
» [L,U]=lu(A) 
 
L = 
 
    1.0000         0         0         0         0         0         0 
   -0.4000    1.0000         0         0         0         0         0 
   -0.4000   -0.6667    1.0000         0         0         0         0 
         0         0   -0.2727    1.0000         0         0         0 
         0         0   -0.2727   -0.5714    1.0000         0         0 
         0         0         0         0   -0.2500    1.0000         0 
         0         0         0         0   -0.2500   -0.5556    1.0000 
 
U = 
 
    5.0000   -2.0000   -2.0000         0         0         0         0 
         0    4.2000   -2.8000         0         0         0         0 
         0         0    7.3333   -2.0000   -2.0000         0         0 
         0         0         0    4.4545   -2.5455         0         0 
         0         0         0         0    8.0000   -2.0000   -2.0000 
         0         0         0         0         0    4.5000   -2.5000 
         0         0         0         0         0         0    3.1111    
 
spy(L) 
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nz = 16  
spy(U)        
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nz = 16            
spy(lu(A))         
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nz = 25  
 
Notice that in this particular case, there has been no increase in storage 
requirements. This is only if we use one matrix to store both lower and upper 
triangles, with implied storage of zero and unity values.    
 
This is not always the case, and some non-zero elements may be introduced 
during factorisation.   
 
Compare this with the result we obtained with inversion, where the reslting matrix 
was a full matrix. 
 
spy(inv(A)) 
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nz = 49    
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Cholesky factorisation 
 
Unlike the LU factorisation, this works only for symmetric positive definite 
matrices. Similar to the procedure we adopted for the computation of the LU 
factorisation, we can start with the expected result to obtain the factorisation 
algorithm.  
 
The Cholesky factorisation of a symmetric positive definite matrix A produces two 
factors such that: 

A = C’ * C 
 
We will use the MATLAB command to obtain the factors of the matrix we 
considered earlier: 
 
» A=[5 -2 -2 0 -1 0 0; 
-2 5 -2 0 0 0 0; 
-2 -2 11 -2 -2 0 -1; 
0 0 -2 5 -2 0 0; 
-1 0 -2 -2 11 -2 -2; 
0 0 0 0 -2 5 -2; 
0 0 -1 0 -2 -2 5] 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
    -1     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
» C=chol(A) 
 
C = 
 
    2.2361   -0.8944   -0.8944         0   -0.4472         0         0 
         0    2.0494   -1.3663         0   -0.1952         0         0 
         0         0    2.8868   -0.6928   -0.9238         0   -0.3464 
         0         0         0    2.1260   -1.2418         0   -0.1129 
         0         0         0         0    2.8925   -0.6914   -0.8505 
         0         0         0         0         0    2.1265   -1.2171 
         0         0         0         0         0         0    1.6317 
 
» transpose(C)*C 
 
ans = 
 
    5.0000   -2.0000   -2.0000         0   -1.0000         0         0 
   -2.0000    5.0000   -2.0000         0         0         0         0 
   -2.0000   -2.0000   11.0000   -2.0000   -2.0000         0   -1.0000 
         0         0   -2.0000    5.0000   -2.0000         0         0 
   -1.0000         0   -2.0000   -2.0000   11.0000   -2.0000   -2.0000 
         0         0         0         0   -2.0000    5.0000   -2.0000 
         0         0   -1.0000         0   -2.0000   -2.0000    5.0000 



114 A systems approach to circuits, measurements and control 

We will use the MATLAB command nnz to obtain the number of non-zero 
elements of A and C: 
 
» nnz(A) 
 
ans = 
 
    29 
 
» nnz(C) 
 
ans = 
 
    20 
 
We will now examine the effect of re-ordering the equations on sparsity. We will 
use the reordering algorithm symrcm available in MATLAB. Its description is as 
follows: 
 
SYMRCM Symmetric reverse Cuthill-McKee permutation. 
    p = SYMRCM(S) returns a permutation vector p such that S(p,p) 
    tends to have its diagonal elements closer to the diagonal than S. 
    This is a good preordering for LU or Cholesky factorization of 
    matrices that come from "long, skinny" problems.  It works for 
    both symmetric and asymmetric S. 
 
» p=symrcm(A) 
 
p = 
 
     2     1     7     6     3     5     4 
 
» A1=A(p,p) 
 
A1 = 
 
     5    -2     0     0    -2     0     0 
    -2     5     0     0    -2    -1     0 
     0     0     5    -2    -1    -2     0 
     0     0    -2     5     0    -2     0 
    -2    -2    -1     0    11    -2    -2 
     0    -1    -2    -2    -2    11    -2 
     0     0     0     0    -2    -2     5 
 
» chol(A1) 
 
ans = 
 
    2.2361   -0.8944         0         0   -0.8944         0         0 
         0    2.0494         0         0   -1.3663   -0.4880         0 
         0         0    2.2361   -0.8944   -0.4472   -0.8944         0 
         0         0         0    2.0494   -0.1952   -1.3663         0 
         0         0         0         0    2.8452   -1.1716   -0.7029 
         0         0         0         0         0    2.5928   -1.0890 
         0         0         0         0         0         0    1.8221 
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» C1=chol(A1) 
 
C1 = 
 
    2.2361   -0.8944         0         0   -0.8944         0         0 
         0    2.0494         0         0   -1.3663   -0.4880         0 
         0         0    2.2361   -0.8944   -0.4472   -0.8944         0 
         0         0         0    2.0494   -0.1952   -1.3663         0 
         0         0         0         0    2.8452   -1.1716   -0.7029 
         0         0         0         0         0    2.5928   -1.0890 
         0         0         0         0         0         0    1.8221 
 
» nnz(C1) 
 
ans = 
 
    19 
 
Compare with a different reordering algorithm: 
 
SYMMMD Symmetric minimum degree permutation. 
    p = SYMMMD(S), for a symmetric positive definite matrix S, 
    returns the permutation vector p such that S(p,p) tends to have a 
    sparser Cholesky factor than S.  Sometimes SYMMMD works well 
    for symmetric indefinite matrices too. 
 
» q=symmmd(A) 
 
q = 
 
     4     1     2     6     7     3     5 
 
» A2=A(q,q) 
 
A2 = 
 
     5     0     0     0     0    -2    -2 
     0     5    -2     0     0    -2    -1 
     0    -2     5     0     0    -2     0 
     0     0     0     5    -2     0    -2 
     0     0     0    -2     5    -1    -2 
    -2    -2    -2     0    -1    11    -2 
    -2    -1     0    -2    -2    -2    11 
 
» C2=chol(A2) 
 
C2 = 
 
    2.2361         0         0         0         0   -0.8944   -0.8944 
         0    2.2361   -0.8944         0         0   -0.8944   -0.4472 
         0         0    2.0494         0         0   -1.3663   -0.1952 
         0         0         0    2.2361   -0.8944         0   -0.8944 
         0         0         0         0    2.0494   -0.4880   -1.3663 
         0         0         0         0         0    2.7010   -1.5303 
         0         0         0         0         0         0    2.2256 
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» nnz(C2) 
 
ans = 
 
    19 
 
We end up with the same number of non-zero elements after factorisation. We 
will now try a very simple reordering algorithm: reorder by rank of non-zero 
elements in each row. 
 
» r=[2 4 6 1 7 3 5] 
 
r = 
 
     2     4     6     1     7     3     5 
 
» A3=A(r,r) 
 
A3 = 
 
     5     0     0    -2     0    -2     0 
     0     5     0     0     0    -2    -2 
     0     0     5     0    -2     0    -2 
    -2     0     0     5     0    -2    -1 
     0     0    -2     0     5    -1    -2 
    -2    -2     0    -2    -1    11    -2 
     0    -2    -2    -1    -2    -2    11 
 
» C3=chol(A3) 
 
C3 = 
 
    2.2361         0         0   -0.8944         0   -0.8944         0 
         0    2.2361         0         0         0   -0.8944   -0.8944 
         0         0    2.2361         0   -0.8944         0   -0.8944 
         0         0         0    2.0494         0   -1.3663   -0.4880 
         0         0         0         0    2.0494   -0.4880   -1.3663 
         0         0         0         0         0    2.7010   -1.5303 
         0         0         0         0         0         0    2.2256 
 
» nnz(C3) 
 
ans = 
 
    18 
 
The reordering in terms of the rank order of non-zero elements gives the best 
result. 

Solution of ordinary differential equations 
Circuits containing energy storage elements (capacitors and inductors) give rise 
to systems of equations containing derivatives of currents and / or voltages. The 
numerical solution of such equations is based on their conversion to difference 
equations, using approximate representations. 
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Runga-Kutta methods 
 
There is a family of Runga-Kutta methods, each based on the Taylor series, but 
differing by the number of terms of the series considered. The simplest of these 
is the second-order Runga-Kutta method, which takes on one more term than the 
Euler method: 
 

30

2

000 )(
!2

)()()( Rtxhtxhtxhtx +++=+ &&&  
 
We now use the first order approximation to compute the second derivative as: 
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Substituting this in the first equation, we get: 
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The resulting algorithm for the second order Runga-Kutta method is therefore as 
follows: 
 
Start with the initial value, )( 0tx . 
 
Evaluate )()()( 000 tButAxtx +=&  
 
Compute )()()(ˆ 0001 txhtxhtx &+=+  
 
Evaluate )()(ˆ)(ˆ

00101 htBuhtxAhtx +++=+&  
 

Compute )](ˆ)([
2

)()(ˆ 010002 htxtxhtxhtx +++=+ &&  

 
Set t0 = (t0+h) and go back to step 1. 
 
The most popular algorithm is the fourth order Runga-Kutta method, which uses 
two more terms of the Taylor series expansion to obtain a more accurate 
estimation.  
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You would have noted that the Taylor series also gives an estimated upper 
bound of the error. This is used to implement a dynamic step length adjustment 
algorithm, whereby the step length is halved if the estimate of the error exceeds 
a design value, and is doubled if it falls below a specified lower limit. The 
doubling of the step length is used to reduce computation effort and to reduce 
numerical round-off errors. In practice, we need to trade-off between the two 
types of errors to get a best estimate. 
 
One major advantage of numerical methods is that it is not limited to linear 
systems. Even though we implicitly assumed the system to be linear, by 
considering the system equation to be  
 
 BuAxx +=& ; 
 
this is not necessary. We could evaluate the derivative of x using any linear or 
non-linear expression: 
 
 ),( uxfx =& . 
 
and the algorithm would still work. 
 
The formula for the fourth order Runga-Kutta method is as follows: 
 

)())()
2

(4)((
6

)()( 5hOhtfhtftfhtxtx ++++++=+τ  

 
Predictor-Corrector Methods 
  
The Predictor-Corrector is another popular family of algorithms for the numerical 
solution of ordinary differential equations. As the name implies, these are a family 
of itterative techniques, where you first predict the next step and then correct it 
using the new estimates. 
 
We will introduce the general philosophy of predictor-corrector methods through 
a simple example. Consider the first order equation: 
 

00 )()),(()( xtxvalueinitialwithttxftx ==&  
 
Let us define 
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Using Simpson’s rule, we can write 
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)()4(
3

5
1111 hOxxxhxx nnnnn ++++= +−−+ &&&  

But from the defining state equations, we have: 
 

)))1((,( 011 hntxfx nn ++= ++&  
 
These two equations are solved itteratvely as predictor and corrector equations. 
However, to start the operation, we need an initial estimate of xn+1. Milne’s 
formula: 

)()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&&  

may be used to obtain an initial value for xn+1 provided we have estimates for 
three previous values. Runga-Kutta method may be used to start the algorithm. 
The complete algorithm then is as follows: 
 
Starting with x0 at to, find x1 , x2 and x3 at (t+h) and (t+2h) using the Runga Kutta 
algorithm. 
 
Calculate 321 , xandxx &&&  using )))1((,( 011 hntxfx nn ++= ++&  
 

Use Milne’s formula )()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&& to obtain a 

starting value for x4 
 
Use the predictor-corrector pair of equations to refine the value of x4 
 
Use Milne’s formula to obtain a starting value for the next step, refine using the 
predictor-corrector formulae, and repeat. 

Finite difference and finite element methods 
Ordinary differential equations (the type of equations we have encountered so far 
in circuit analysis and systems modelling) can be solved by transforming them 
into difference equations as follows: 
 

),( txfx =&  
 
is replaced by 
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where ),( tx ∆∆ are the steps in the itteration process. This can be seen as a 
rather primitive version of the sophisticated algorithms such as Runga-Kutta that 
we have been studying, which only take into account first order terms. 
Neverthiless, it is a very efficient methos for the solution of ordinary differential 
equations. 
 
When more than one independent variable is involved, we get partial differential 
equations (PDE) and the corresponding method is the finite element method. 
 
Typically, we encounter PDEs in problems associated with electromagnetic 
waves where the three space variables and time are all independent variables. 
PDEs also arise in other branches of engineering, in fluid flow, heat transfer and 
stree analysis, for example. 
 
A treatment of the FEM will not be attempted here. 

2.3.3 Networks with sparse matrices 
 
Sparse matrices are generated in many engineering (and other) applications.  
 
We will consider a few examples from arising from the formulation of circuit 
equations. Consider a circuit with four nodes as shown: 
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Writing the node equations with respect to the ground (node 0), we have: 
 
















=

































++−−
−++−
−−++

0
0

3

2

1

65446

44322

62621 si

v
v
v

GGGGG
GGGGG
GGGGG  

This can be written as: 
iGv =  
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Note that G is symmetric, and that the diagonal is probably dominant 
 
Note also that this is not, sparse; it is in fact a full matrix.  
 
Now let us look at a network formed by cascading two of these (except for the 
current source) as follows: 

G7

G2
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G10

G11

G12

.

.

.

.

4 5

is G1

G2

G3

G4

G5

G6
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.

.

.

1 2 3

0

 
This has six nodes (including the reference node) and so five nodal equations, 
with 25 possible entries. However, we note that: 
 
Node 1 is connected to only 2 other nodes, 
Node 2 is connected to only 2 other nodes, 
Node 3 is connected to only 4 other nodes, 
Node 4 is connected to only 2 other nodes, 
Node 5 is connected to only 2 other nodes, 
so that the non-zero elements of the new conductance matrix are as indicated 
below: 























***
***
*****

***
***

 

 
There are eight zero elements. Out of a total of 25. If we had another of the 
original networks connected in cascade, to give a 7 x 7 conductance matrix, we 
would have the following pattern: 





























***
***
*****

***
*****

***
***
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There are only twenty-five non-zero elements, out of a possible total of 49, that is 
the matrix is almost half empty. This of course is a particular example, but in 
general, as the size of the network increases, its sparsity also increases in most 
practical cases. 
 
We define the sparsity of a matrix as the ratio between the number of zero 
elements and the total number of elements. In the last case, we have a sparsity 
of 24/49 = 0.49 or 49 %. 
 
MATLAB has a number of demonstration matrices taken from real-life situations. 
The “west0479” is a matrix describing connections in a model of a diffusion 
column in a chemical plant. It is 479 x 479 and has 1887 non-zero elements. 
 
The following instructions will load this matrix and set matrix A equal to it: 
 
load west0479 
A=west0479 
 
We can examine its size and the number of non-zero elements using: 
 
size(A) 

ans = 
 
     479   479 
 
nnz(A) 

ans = 
 

       1887 
Thus, the sparsity of this matrix is  
 

%100*
479*479

)1887479*479( −
 

 
Using MATLAB, we can obtain this as: 
 
Per_cent_sparsity = 100*(prod(size(A))-nnz(A))/prod(size(A)) 
 
Per_cent_sparsity = 

 
   99.1776 

 
We can also obtain a plot of the positions where there are non-zero entries, 
similar to what we saw with the example network by using the MATLAB 
command “spy”: 
 
spy(A) 
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Reordering for conservation of sparsity 
 
We have already looked at pivoting for reducing round-off errors, when 
considering Gaussian elimination. In addition to ensuring that the diagonal 
element be non-zero (a zero diagonal element will lead to a breakdown of the 
process), it is better that it be comparatively large, as this would reduce 
computational errors. 
 
We will now look at the special case of sparse matrices, where it is desirable to 
maintain sparsity during he process of factorisation. 
 
We saw that the processing of the sparse matrix considered in LU factorisation 
did not result in adding new non-zero elements. This is not always so. We will 
consider a slightly modified matrix to illustrate this point. 
 





























−−−
−−
−−−−−

−−
−−−−−

−−
−−−

5220100
2520000
22112201
0025200
10221122
0000252
0010225

 

 
The non-zero elements of this matrix is shown below: 
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0 2 4 6 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

nz = 29  
The non-zero elements of the matrix after LU factorisation (both lower and upper 
triangles entered on one matrix, with implied unity elements on the diagonal) 
obtained using MATLAB is as shown: 
 

0 2 4 6 8 

0 
1 
2 
3 
4 
5 
6 
7 
8 

nz = 33  
Note that there are four additional non-zero elements, which have arisen as a 
result of the factorisation.  
 
We need to look at the possibility of reducing the addition of new elements, by 
proper ordering of the equations. MATLAB has two important reordering 
schemes: 
 
Reverse-Cuthill-McKee reordering scheme 
Symmetric Minimum Degree scheme 
They are described as follows: 

SYMRCM Symmetric reverse Cuthill-McKee permutation.  

p = SYMRCM(S) returns a permutation vector p such that S(p,p) tends to have its diagonal elements 
closer to the diagonal than S. This is a good preordering for LU or Cholesky factorization of 
matrices that come from "long, skinny" problems.  It works for both symmetric and asymmetric S. 

SYMMMD Symmetric minimum degree permutation.  
 
p = SYMMMD(S), for a symmetric positive definite matrix S, returns the permutation vector p such 
that S(p,p) tends to have a sparser Cholesky factor than S. Sometimes SYMMMD works well for 
symmetric indefinite matrices too. 
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They both give “better” results with the LU factorisation than the original, in that 
the number of non-zero elements introduced is reduced. 
 
However, the most obvious and the simplest reordering scheme is to order the 
rows (and columns) in increasing number of non-zero elements. In this particular 
case, it yields the order: 
 
2     4     6     1     7     3     5 
 
When the rows and columns are reordered in this manner (so that the diagonal 
elements remain as diagonal elements), the new matrix is: 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
    -1     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
We will compare these three reordering schemes, with respect to our example. 
 
» p=symrcm(A) 
 
p = 
 
     2     1     7     6     3     5     4 
 
» q=symmmd(A) 
 
q = 
 
     4     1     2     6     7     3     5 
 
» r 
 
r = 
 
     2     4     6     1     7     3     5 
 
» A1=A(p,p) 
 
A1 = 
 
     5    -2     0     0    -2     0     0 
    -2     5     0     0    -2    -1     0 
     0     0     5    -2    -1    -2     0 
     0     0    -2     5     0    -2     0 
    -2    -2    -1     0    11    -2    -2 
     0    -1    -2    -2    -2    11    -2 
     0     0     0     0    -2    -2     5 
 
» A2=A(q,q) 
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A2 = 
 
     5     0     0     0     0    -2    -2 
     0     5    -2     0     0    -2    -1 
     0    -2     5     0     0    -2     0 
     0     0     0     5    -2     0    -2 
     0     0     0    -2     5    -1    -2 
    -2    -2    -2     0    -1    11    -2 
    -2    -1     0    -2    -2    -2    11 
 
» A3=A(r,r) 
 
A3 = 
 
     5     0     0    -2     0    -2     0 
     0     5     0     0     0    -2    -2 
     0     0     5     0    -2     0    -2 
    -2     0     0     5     0    -2    -1 
     0     0    -2     0     5    -1    -2 
    -2    -2     0    -2    -1    11    -2 
     0    -2    -2    -1    -2    -2    11 
 
» nnz(A) 
 
ans = 
 
    29 
 
» nnz(lu(A)) 
 
ans = 
 
    33 
 
» nnz(lu(A1)) 
 
ans = 
 
    31 
 
» nnz(lu(A2)) 
 
ans = 
 
    31 
 
» nnz(lu(A3)) 
 
ans = 
 
    29 
 
The fact that the simple rank-order reordering is the best in this case (as it does 
not introduce any new non-zero) elements does not mean that it is always the 
best. It is very much dependant on the structure of the matrix under 
consideration. 
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Intuitively, a better scheme would be to reorder the balance equations after each 
row is processed, in the order of the freshly computed rank order. This is much 
more time consuming, but would be justified if the factored matrix is to be 
repeatedly used with new vectors (b), as is the case with (say) power system 
load flow studies. A still better algorithm is to allow for the fact that some of the 
original non-zero elements may actually vanish during processing due to 
cancellation, and to determine the rank order at each stage, taking into account 
such cancellations. This is even more time consuming than the previous method, 
but may be justified under special circumstances, such as in repeated on-line 
transient analysis. 
  

Sparsity programming 
 
The efficient storage and retrieval of sparse matrices need special programming 
techniques, if we are to exploit their sparsity. We can reduce both storage and 
computational requirements for the processing of such matrices by proper choice 
of techniques. Some reservations have been expressed in recent times about 
some of the traditional methods used, on account of the relative burdens of 
computation and access times of modern personal computers. It has also been 
pointed out that storage is now comparatively cheap. However, along with the 
advancement of technology that has brought cheap mass storage, the 
dimensions of the problems that need to be tackled has also increased. 
Therefore, there is a continuing need for good and efficient programming 
methods for the handling of very large sparse matrices. 
 
MATLAB has a special collection of routines for handling sparse matrices. We 
have already used some of them, without bothering about how such matrices are 
stored. 
 
Let us consider our continuing example. 
 
» A 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
    -1     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
» sparse(A) 
 
ans = 
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   (1,1)        5 
   (2,1)       -2 
   (3,1)       -2 
   (5,1)       -1 
   (1,2)       -2 
   (2,2)        5 
   (3,2)       -2 
   (1,3)       -2 
   (2,3)       -2 
   (3,3)       11 
   (4,3)       -2 
   (5,3)       -2 
   (7,3)       -1 
   (3,4)       -2 
   (4,4)        5 
   (5,4)       -2 
   (1,5)       -1 
   (3,5)       -2 
   (4,5)       -2 
   (5,5)       11 
   (6,5)       -2 
   (7,5)       -2 
   (5,6)       -2 
   (6,6)        5 
   (7,6)       -2 
   (3,7)       -1 
   (5,7)       -2 
   (6,7)       -2 
   (7,7)        5 
 
The instruction sparse (A) has converted the storage of the matrix A from its 
normal form into the sparse matrix representation in MATLAB. As can be seen, 
this representation uses two integer arrays to indicate the indices of each non-
zero element and another real (or complex) array to represent the value of each 
element. In the case of this example, it is obviously not an efficient mode of 
storage, for we have used a total of (3*29 = 87) locations to store 49 (including 
zero) elements. However, it comes to its own as the size of the matrix and the 
sparsity increases, as in the case of the test matrix presented earlier. 
 
We will now consider a slightly more sophisticated mode of representation 
related to this same method, which allows for the fact that the diagonal element 
of most matrices of practical interest would be non-zero, and also facilitates easy 
reordering. 
 
The first column gives the values of the diagonal elements, in order, as at the 
beginning. The second and the third columns give the row ordering scheme, and 
at the start, it is simply 1, 2,3 etc. We will later see why we need two columns. 
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5 1 1 2 -2 P1

5 2 2 1 -2 P2

11 3 3 1 -2 P3

5 4 4 3 -2 P4

11 5 5 1 -1 P5

5 6 6 5 -2 P6

5 7 7 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

 
The next set of three columns give the first non-zero off-diagonal element in each 
row as a combination of three values The first of these give the column index, the 
second gives the element value and the third is a pointer to the location of the 
next non-zero element in the row. The pointer will be set to zero if there are no 
more non-zero values. 
 

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

3 -2 P

3 -2 0

2 -2 P

5 -2 0

3 -2 P

7 -2 0

5 -2 P

5 -1 0

4 -2 P

4 -2 P

6 -2 0

5 -2 P

6 -2 P

7 -1 0

7 -2 0

P1

P2

P3

P4

P5

P6

P7

  
If we now reorder the equations according to (say) the pattern r discussed earlier, 
we will not move any of the values other than the pointers and reverse pointers 
on the second and third columns: 
 
r = 2  4  6  1  7  3  5 
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5 4 2 2 -2 P1

5 1 4 1 -2 P2

11 6 6 1 -2 P3

5 2 1 3 -2 P4

11 7 7 1 -1 P5

5 3 3 5 -2 P6

5 5 5 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

 
The original matrix and the reordered matrix are as follows: 
 
A = 
 
     5    -2    -2     0    -1     0     0 
    -2     5    -2     0     0     0     0 
    -2    -2    11    -2    -2     0    -1 
     0     0    -2     5    -2     0     0 
     0     0    -2    -2    11    -2    -2 
     0     0     0     0    -2     5    -2 
     0     0    -1     0    -2    -2     5 
 
>> r=[2 4 6 1 7 3 5] 
 
r = 
 
     2     4     6     1     7     3     5 
 
>> A1=A(r,r) 
 
A1 = 
 
     5     0     0    -2     0    -2     0 
     0     5     0     0     0    -2    -2 
     0     0     5     0    -2     0    -2 
    -2     0     0     5     0    -2    -1 
     0     0    -2     0     5    -1    -2 
    -2    -2     0    -2    -1    11    -2 
     0    -2    -2     0    -2    -2    11 
 
Follow the pointers and work out how the indices help you to interpret the entroes 
after reordering. 


