

2
State and state space

We have been studying electrical circuits with reference to the complex
frequency s and the s-plane. You have seen this to be a technique that is most
convenient, especially when you are interested in the steady-state behaviour of a
circuit. There is an alternative way in which we can model dynamic systems,
including electrical circuits, which is more suited for the study of their transient
behaviour.

The state of a system in this context means exactly the same as the common
English meaning of the word. However, we need to be able to define it more
precisely. For a known system, a knowledge of its present state and any future
inputs from the external world should be sufficient for us to be able to predict its
future state. This then is what the state means. The variables, whose values tell
us what the present state is, are known as state variables.

A set of state variable is the minimum set of variables, whose values at any
instant, along with the inputs from then onwards, would enable the complete
determination of the values of the state variables in the future. In effect, the state
variables contain all the information about the past and the present, necessary
for the prediction of their future values.

56 A systems approach to circuits, measurements and control

2.1 State variables and state space representation

Introduction

We are used to the description of dynamic systems using differential equations.
We will examine their relationship through a simple example.

A pendulum, swinging (with small amplitude) in a gravitational field, in a vacuum
will continue to swing indefinitely as there is no resistance to slow it down.
Similarly, an initially charged capacitor shorted through an inductor (assumed to
be without resistance) will give rise to a cyclic charge-discharge activity. In the
absence of any circuit resistance or leakage across the capacitor, this will
continue indefinitely. Both these phenomena may be described by a simple
second order differential equation.

 d2 x / dt2 + ωn

2 x = 0

[If there were any resistance, the equation would be of the form
:

d2 x / dt2 + 2ζωn dx / dt + ωn
2 x = 0]

We can break this down into two simultaneous first order differential equations by
defining two new variables:

 x1 = x
 x2 = dx / dt = dx1 /dt

Then,

dx1 / dt = x2

 dx2 /dt = -ωn

2 x1

If we know the values of x1 and x2 at any instant of time t1, then, it is possible to
compute their values for all t > t1 (We will also need to know all inputs for t ≥ t1.,
assumed to be zero in the above formulation) Thus, x1 and x2 are a valid set of
state variables. They are of course not the only valid set, for, we could define
(say)

 z1 = x1 + x2
 z2 = x1 – x2,

Chapter 2 – State and state space 57

Then, we can obtain x1 and x2 from z1 and z2, and hence, (z1, z2) is also a valid
set of state variables. There are thus an infinite number of such sets of state
variables.

The space defined by the state variables is known as the state-space. In the
above example, the two-dimensional space x1-x2 is the state-space, and any
point on it will represent a state of the system. If the state vector in a 3-vector,
then its corresponding state-space is also three-dimensional. An n-dimensional
state vector will describe a motion in an n-dimensional state-space.

 We saw how the state space representation relates to the description of a
physical system otherwise described by a set of differential equations. We will
now examine the relationship between state space and the system function of a
network. The system function is, as we saw earlier, a function of the complex
frequency s, representing the ratio of the Laplace transform of a response to the
Laplace transform of the excitation causing the response. In this sense, we can
look at all such functions as transfer functions.

We have already seen that if the (network) model can be arranged as a set of
interconnections among integrators, their outputs constitute a possible set of
state variables. With this background, we will attempt to breakdown a function of
the complex variable s into a set of relations that can be easily represented by
integrators.

We have also noted that the most general form of a system function is given by a
real rational function of s, expressed as the quotient of two polynomials in s.

H(s) = q(s) / p(s), where

q(s) = bm(s-z1)(s-z2) . . . (s-zm)
p(s) = (s-p1)(s-p2) (s-pn)

Unlike in the study of other more general systems (such as in Control Systems),
we have the advantage that network functions of passive networks are subject to
certain constraints. The poles and zeros are simple, that is there are no higher
order poles or zeros, and there are no poles or zeros on the right hand side of
the s-plane.

We can expand H(s) into partial fractions, so that each term corresponds to a
single integrator, whose output can then be considered as a state variable. We
will, for completeness, examine the general case of how to obtain a set of state
variables, given a real rational function of s.

58 A systems approach to circuits, measurements and control

This is of course a very mechanical treatment, giving no physical insight into the
problem being studied. It is much more useful to recognise suitable physical
quantities as the state variables, and obtain the equations governing their
relationships.

We saw that there are many alternate ways of describing the behaviour of a
dynamic system, using different state variables. They are all transformations of
each other, and most have no physical significance. In the case of the simple
pendulum considered earlier, we could have derived the state space description
using the angular displacement and the angular velocity as state variables.
These obviously have physical significance. But an equally valid, from a
representational point of view, pair of state variables would have been the sum of
the angular displacement and the angular velocity as one variable and their
difference as the other. This combination does not make physical sense.

In engineering, we would always prefer to formulate our equations in terms of
variables that have some physical significance. This has a number of
advantages, including the ability to make reality checks and providing us with an
insight into the problem under study.

We noted earlier on that the state variables contain all the information about the
past and the present necessary for the prediction of future behaviour. There are
many ways in which these can be visualised. They are connected with “memory”,
and they are in some manner associated with energy storage. In linear electrical
circuits, only inductors and capacitors can store energy (Resistors dissipate
energy, but cannot store it.)

We have a choice in the selection of state variables with physical significance.
We could select either (flux φ, charge q) or (current i, voltage v) as our preferred
set of variables. Other combination including different combinations of these are
of course possible as we saw earlier, but these seem to offer alternatives with
real physical significance.

We may use the methods of nodal and mesh analysis, or alternatively, energy
function methods to obtain the state equations of a system.

2.1.1 State-space

A second order system (with no inputs) may be represented by a set of two state
equations as follows:

),(
),(

2122

2111

xxfx
xxfx

=
=

&

&

Chapter 2 – State and state space 59

We can draw a block diagram of these two equations, using two integrators, as
follows:

f1(x1,x2)

f2(x1,x2)

x1

x2

dx1/dt

dx2/dt

The outputs of the integrators may be taken as a possible set of state variables.

We can then visualise this system as moving in a two-dimensional space as
shown below.

X1

X2

X2(t)

X1(t)

t

A point [x1(t), x2(t)] on the path represents the state of the system at time t. It is
obvious that the system shown above would be non-linear, and be a rather
complex one.

The simple harmonic motion represented by the set of linear equations

dx1 / dt = x2

 dx2 /dt = -ωn

2 x1

considered earlier would be represented on the state-space as follows:

60 A systems approach to circuits, measurements and control

X1

X2

A trajectory on a three-dimensional state-space may be visualised as follows:

X1

X2

X3

Unfortunately, it is not possible to directly represent spaces of higher dimensions
on a two-dimensional surface, but you should not have much difficulty in
visualising the extension of the concept of state – space to n dimensions.

2.1.2 Obtaining state variables and state equations from a
transfer function

Consider the general form of a transfer function:

01
1

1

01
1

1

...
...

)(
asasas
bsbsbsb

sH n
n

n

n
n

n
n

++++
++++

= −
−

−
−

Let the function H(s) denote a relationship between two functions U(s) and Y(s)
such that:

Chapter 2 – State and state space 61

)(
)(
)(sH
sU
sY

=

]...)[(]...)[(01

1
101

1
1 bsbsbsbsUasasassY n

n
n

n
n

n
n ++++=++++ −

−
−

−

Dividing by sn and rearranging,

)]()([1)]()([1
....

)]()([1)]()([1)()(

00111

22211

sYasUb
s

sYasUb
s

sYasUb
s

sYasUb
s

sUbsY

nn

nnnnn

−+−

++

+−+−+=

−

−−−−

The implementation of these using integrators is shown in the figure.

From this, we can write down the state space description by inspection, if we
chose the outputs of the integrators as the state variables.

b0
Σ

Σ
b1

bn-2
Σ

Σbn-1

Σ

a0

a1

an-2

an-1

bn

+

+

+

+

+
+

+

+

+

-

-

-

-

u(t)

y(t)

x1

dx1/dt

x2

xn-1

xn

dx2/dt

dxn-1/dt

dxn/dt

.

62 A systems approach to circuits, measurements and control

ubxax
ubxxax

ubxxax
ubxxax

n

nn

nn

nn

010

1111

23122

12111

....

+−=
++−=

++−=
++−=

−

−−

−−

&

&

&

&

The output y is given by:

ubxy 01 +=

In matrix form, we can write:

u

b
b

b
b

x
x

x
x

a
a

a
a

x
x

x
x

n

n

n

n

n

n

n

n



























+





















































−
−

−
−

=



























−

−

−

−

−

−

0

1

2

1

1

2

1

0

1

2

1

1

2

1

.

.
.
.

.0..000
1...000

.

.
0..010
0...01

.

.

&

&

&

&

[] [] ub

x
x

x
x

y n

n

n

+



























=

−1

2

1

.

.

.
0...001

In concise form:

DUCXY
BUAXX

+=
+=&

As has been repeatedly emphasised, there is no unique set of state variables,
and what we defined in the above analysis is just one possible selection of state
variables, given the function H(s). We will now examine one other possible form,
obtained by the partial fraction expansion of the given function.

Chapter 2 – State and state space 63

Let us first assume that all the poles are distinct and real. Then, we can write:

∑
= +

==
n

i i

i

s
k

sU
sYsH

1)(
)()(

λ

Considering each term,

[])()(1)(

)()()(
)(
)(

sXsUk
s

sX

sXsUkssX
s
k

sU
sX

iii

iii

i

ii

λ

λ
λ

−=

−=
+

=

This leads to:

Σki
+

-
dxi/dt

u xi

iλ

If we again select the outputs of the integrators as the state variables:

∑
=

=

+−=
n

i
i

iiii

xy

ukxx

1

λ&

In matrix form:

u

k
k

k
k

x
x

x
x

x
x

x
x

n

n

n

n

n

n

n

n



























+





















































−
−

−
−

=



























−−−− 1

2

1

1

2

1

1

2

1

1

2

1

.

.
.
.

...000
0..000

.

.
0..000
0...00

.

.

λ
λ

λ
λ

&

&

&

&

64 A systems approach to circuits, measurements and control

[] []



























=

−

n

n

x
x

x
x

y

1

2

1

.

.

.
1...111

This is again of the form

DUCXY
BUAXX

+=
+=&

even though the structure of the matrices are different.

2.1.3 Resistors, inductors and capacitors

Consider the following circuit elements:

 Resistance R (ohms)
 Conductance G (mhos) (=1/R)

 Capacitance C (farads)
 Elastance S (darafs) (=1/C)

 Inductance L (henrys)
 Inverse inductance Γ

(inverse henrys) (=1/L)

For the class of linear elements, we have the following relationships:

Defining relationships:

φφ Γ==
==
==

iLi
SqvCvq
GviRiv

,
,
,

i-v relationships:

Chapter 2 – State and state space 65

v
dt
di

dt
diLv

Si
dt
dv

dt
dvCi

GviRiv

Γ==

==

==

,

,

,

The relationships for capacitors and inductors may also be written in integral form
as:

0

0

0

0

)(1)(

)(1)(

idv
L

ti

vdi
C

tv

t

t

t

t

+=

+=

∫

∫

ττ

ττ

Relationships derived from resistances do not yield state equations, as they can
only be algebraic equations and not differential equations. If we select v-i
relationships as the relationships of choice (this is not necessary, we could
equally well select others such as flux – charge relationships), we are led
naturally to select:

voltages across capacitors
and

currents through inductors

as the state variables of choice.

[In the generalised theory of dynamic systems, there are analogous choices to be
made for the representation of physical phenomena in mechanical systems,
thermodynamic systems and fluidic systems]

2.1.4 Formulation of state equations by nodal and mesh
analysis

We will demonstrate the derivation of state equations through nodal and mesh
analysis through a simple example. Consider the network shown below:

R1 C1

R2C2L
e

i1 i3i2

.

66 A systems approach to circuits, measurements and control

Writing the mesh equations:

011

0111

323
2

2
2

3
2

2
2

2
1

21

2111

=++−

=−+++−

=−+

∫∫

∫∫∫

iRdti
C

dti
C

dti
C

dti
C

dti
C

iLiL

eiLiLiR

&&

&&

Differentiating the second and third equations to transform from integral to
differential form, these may be rewritten as:

0
0)(

32232

31221221121

2111

=++−

=−+++−

=−+

iRCii
iCiCCiCLCiCLC

eiLiLiR

&

&&&&

&&

From the above, it appears that there are two variables with second derivatives.
In fact, there is only one, (i1-i2). We need to recognise this fact, that there is only
one variable with a second derivative.

If we rewrite the equations using (i1-i2) as a single variable (and also abandoning
(say) i1 as an independent variable):

0
0)()(

)()(

32232

312212121

2121211

=++−

=−++−−

=−++−
••

•

iRCii
iCiCCiiCLC

eiiLiRiiR

&

48476

48476

As there are no derivatives of i2, it can be eliminated (by substituting for i2 from
the third equation, into the other two) to yield:

0))(()(

)()(

313223212121

32123121211

=−+++−−

=++−+−
••

•

iCiRCiCCiiCLC

eiRRCiRiiLiiR

&
876

&
876

If we now define:

33

212

211

)(
ix

iix

iix

=
−=

−=
• 876

Chapter 2 – State and state space 67

We get the state equations:

0)(
_

3232221221

321231211

21

=+++−
=++

=

xCxRCCCxCLC
exRRCxRLxxR

xx

&&

&

&

Rearranging, we get:

[]

e
RCLC
CC

x
CLC
CC

x
RCC
CC

x
CLC
CC

x
LC

e
RRC

x
RC

x
RRC
Lx

RCLC
RCC

xCxRCCC
CLC

x

e
RRC

x
RC

x
RRC
Lx

RC
x

xx

121

21
3

21

21
2

121

21
1

21

21

3
1212

3
22

2
212

1
221

221

3232221
21

2

212
3

22
2

212
1

22
3

21

2

1111)(

)(1

111

+
−

+
+

+
+

+
=

+







−++

+
=

++=

−++=

=

&&

&

&

In matrix form,

BUAXX +=&
where:
















=

3

2

1

x
x
x

X ,

























+++
=

2221222

21

21

121

1

1

21

11

2
2

010

RCRRC
L

RC

CLC
CC

RCC
CC

CLC
CC

A

























−

+
−=

212

121

21

1

0

RRC

RCLC
CCB

68 A systems approach to circuits, measurements and control

We could, alternatively, have started by writing the nodal equations, and obtained
the state equations in terms of the node-pair voltages and their derivatives.

Another approach (to both nodal and mesh analysis) is to define the state
variables in terms of physical variables that correspond directly to the state – the
currents through inductors and voltages across capacitors. This would be the
most direct approach, and we will repeat the analysis of this circuit using his
approach. (This is a method that can be carried across to the study of other
systems such as mechanical, thermal and fluid systems, which all have
identifiable “through” variables and “across” variables)

R1 C1

R2C2L
e

i1

V1

V2

V2V1+V2

.

Writing the nodal equations in terms of i1, v1 and v2, we have:

0

0

2

2
2211

111
1

21

=++−

=++
−+

R
v

vCvC

vCi
R

evv

&&

&

We also have the additional relationship:

121 iLvv &=+

Rearranging, we have:

e
CR

v
RRC
RR

v
CR

i
C

v

e
CR

v
CR

v
CR

i
C

v

v
L

v
L

i

21
2

212

21
1

21
1

2
2

11
2

11
1

11
1

1
1

211

111

1̀111

11

+
+

−−−=

+−−−=

+=

&

&

&

Chapter 2 – State and state space 69

This is in the standard form. Note how easily the state equations could be
obtained, if we make a proper choice of state variables.

We could equally well have obtained the state equations by writing the mesh
equations.

We can now formally state the procedure for writing down the state equations as
follows:

1. Select the currents through inductors and voltages across capacitors as
the state variables.

2. Write the loop (node-pair) equations for all loops (node-pairs) that
contain (are connected to) at least one storage element (that is, an
inductor or capacitor)

3. If there are n storage elements and only m (m<n) loop (node-pair)
equations, then there will be an additional (n-m) relationships between
the variables we have chosen. Altogether, there will be n equations.

2.1.5 Energy functions

We have defined the loop-based energy functions as:

ki

l

ki
ik

T

ki

l

ki
ik

T

ki

l

ki
ik

T

IISISIV

IIRIRIF

IILILIT

∑

∑

∑

=

=

=

==

==

==

1,

1,

1,

where l is the number of independent loops and the node-pair-based energy
functions as:

ki

n

ki
ik

T

k

n

ki
iik

T

ki

n

ki
ik

T

EEEET

EEGGEEF

EECCEEV

∑

∑

∑

=

=

=

Γ=Γ=

==

==

1,

*

1,

*

1,

*

70 A systems approach to circuits, measurements and control

where n is the number of independent node-pairs.

L, R and S represent the loop inductance, resistance and elastance (reciprocal
capacitance) while C,G and Γ represent the node capacitance, conductance and
reciprocal inductance matrices.

Each of these energy functions is a positive semi-definite quadratic form. Their
positive-semi-definiteness may be established qualitatively by considering that
the loop and node-pair matrices in a passive network have to be positive-semi-
definite because in such a network, the energy stored or dissipated cannot be
negative.

Considering the energy functions derived from the loop equations, if we set

1
1,0

1 =
≠=

I
iI i

then we get:

sVFsTZ /11 ++=

Similarly, starting with the energy functions defined using node-pair equations
and setting

1
1,0

1 =
≠=

E
iEi

we get

sTFsVY /***
11 ++=

We may derive special cases from these results. For example, for an LC
network, F is zero and for an RC network, T is zero. Therefore:

networkRCaforsVFZ
networkLCanforsVsTZ

/
/

11

11

+=
+=

Similar results may be obtained for the driving point admittances using the node-
pair-based energy functions. Obviously, these are not the methods used for
evaluating driving point impedances and admittances, as they lead to complex
expressions. However, the insight provided by this analysis is very useful.

Chapter 2 – State and state space 71

2.1.6 Formulation of state equations using energy
functions

We have already briefly come across the use of energy functions in the previous
lecture, where we referred to the modelling of the capacitor microphone. Let us
now look at it in a little more detail.

Conservative systems

We will first consider conservative systems, that is, systems without energy
sources or sinks, and later go on to consider non-conservative systems.

Example 1

Consider a very simple example, with only one inductor and capacitor as shown.

C L

i

Let us define T as the total system kinetic energy and V as the total system
potential energy. We will call the total energy E

In terms of the charge q and its derivative, we can write:

22

2

2

2
1

2
1

2
1

2
1

q
C

qLVTE

q
C

V

qLT

+=+=

=

=

&

&

Since the system is conservative,

0

01

0

=+

=+

=

qqLC

qq
C

qqL

dt
dE

&&

&&&&

72 A systems approach to circuits, measurements and control

In terms of the flux linkage λ and its derivatives:

0

01
2
1

2
1 22

=+

=+=

+=

λλ

λλλλ

λλ

&&

&&&&

&

LC

C
Ldt

dE

C
L

E

We could use Lagrange’s energy balance equation for conservative systems,
which states that:

0=
∂
∂

+
∂
∂

−







∂
∂

nnn q
V

q
T

q
T

dt
d

&

where
T = total system kinetic energy
V = total system potential energy
n = 1, 2, … refers to the independent coordinates in the system
qn = generalised coordinate

nq& = generalised velocity

qL
q
T

dt
d

qL
q
T

q
C

V

qLT

&&
&

&
&

&

=







∂
∂

=
∂
∂

=

=

2

2

2
1

2
1

0

01

1

0

=+

=+∴

=
∂
∂

=
∂
∂

qqLC

q
C

qL

q
Cq

V
q
T

&&

&&

Chapter 2 – State and state space 73

Example 2

Let us consider one more example:

L3 C1

L4

C2

.
.

.

.

We will consider the flux linkages λ associated with each of the elements as
candidates for the selection of independent coordinates.

[The meaning of a flux linkage associated with a capacitor is not quite clear. We
will assume that a capacitor is in parallel with an infinite inductor, carrying zero
current, but with a flux linkage λ such that its time derivative is equal to the
voltage across the capacitor.]

We could select (say) λ1 and λ2 as our coordinates (but not λ2 and λ4, as they are
not independent)

2
2

4

2
12

3

2
4

4

2
3

3

2
22

2
11

2
1)(

2
1

2
1

2
1

2
1

2
1

λλλ

λλ

λλ

LL

LL
V

CCT

+−=

+=

+= &&

Evaluating with respect to λ1 we have:

)(1

0

12
31

1

11
1

11
1

λλ
λ

λ

λ
λ

λ
λ

−−=
∂
∂

=
∂
∂

=








∂
∂

=
∂
∂

L
V

T

CT
dt
d

CT

&&
&

&
&

74 A systems approach to circuits, measurements and control

This yields the state equation:

0)(1
12

3
11 =−− λλλ
L

C &&

Similarly, evaluating with respect to λ2, we get:

2
4

12
32

2

22
1

22
2

1)(1

0

λλλ
λ

λ

λ
λ

λ
λ

LL
V

T

CT
dt
d

CT

+−=
∂
∂

=
∂
∂

=








∂
∂

=
∂
∂

&&
&

&
&

leading to the state equation:

01)(1
2

4
12

3
22 =+−+ λλλλ

LL
C &&

These two equations may now be expressed in standard form by defining a new
set of state variables as:

2413

2211

,

,,

λλ

λλ
&& ==

==

xx

xx

Non-conservative systems

Let us now consider non-conservative systems. The complete Lagrange’s
equations for such systems are as follows:

n
nnnn

Q
q
V

q
D

q
T

q
T

dt
d

=
∂
∂

+
∂
∂

+
∂
∂

−







∂
∂

&&

where

Chapter 2 – State and state space 75

T = total system kinetic energy
D = total system dissipation factor, and is defined as one half the rate at which
energy is dissipated in the system as heat.
V = total system potential energy
n = 1, 2, … refers to the independent coordinates in the system
Qn = generalised forcing function relative to coordinate n
qn = generalised coordinate

nq& = generalised velocity

To obtain the forcing function relative to the nth coordinate:

Suppose the system has all its coordinates q1, q2, , qn frozen when the
system is in an arbitrary configuration. Now, let one coordinate qi increase by δqi.
Let δwi be the work done by all external forces in the system during the
displacement δqi. Then,

i

i

qi q
w

LimQ
i δ

δ
δ 0→

∆

Example 3

Let us consider the following example:

R3

C1

ia
R4

L2

1λ 2λ
3λ

.

.

.

.
We will choose λ1, λ2 and λ3 as the coordinates.








 −
+

−
=

=

=

4

2
2

3

2
13

2
2

2

2
11

)()(
2
1

2
1

2
1

RR
D

L
V

CT

λλλλ

λ

λ

&&&&

&

76 A systems approach to circuits, measurements and control

3
3 δλ

λ
aaa idt

dt
d

idtvi

forcesexternalbydoneWork

==

=

Therefore,

a
a

a i
i

Qiw

Qconstheldisasw
Qconstheldisasw

===

==
==

3

3
333

222

111

0.,,0
0.,,0

δλ
δλ

δλδ

λδ
λδ

Now let us write down the Lagrange’s equations:

.0

,0

,

2
1

3

2

11
1

2
11

=








∂
∂

=








∂
∂

=








∂
∂

=

λ

λ

λ
λ

λ

&

&

&&
&

&

T
dt
d

T
dt
d

CT
dt
d

CT

2
2

2

321

2
1

,0,0,0

λ

λλλ

L
V

TTT

=

=
∂
∂

=
∂
∂

=
∂
∂

.

)()(

,
)(

,
)(

)()(
2
1

,0,,0

4

23

3

13

3

4

2

2

3

13

1

4

2
2

3

2
13

32

2

21

RR
D

R
D

R
D

RR
D

V
L

VV

λλλλ
λ

λλ
λ

λλ
λ

λλλλ

λ
λ

λλ

&&&&

&

&&

&

&&

&

&&&&

−
+

−
=

∂
∂

−
−=

∂
∂

−
−=

∂
∂








 −
+

−
=

=
∂
∂

=
∂
∂

=
∂
∂

Substituting in the Lagrange’s equation:

Chapter 2 – State and state space 77

From the above, it appears that there are many state variables, as the first
derivatives of λ1, λ2 and λ3 and the second derivative of λ1 appear in the above
equations. However, a careful study reveals that most of them can be eliminated:

Substituting from equations (1) and (2) into equation (3) yields:

aiL
C =+

2

2
11

λ
λ&&

which correspond to only two state equations, as should have been expected for
a system with only two energy storage elements.

)3()()(

)2(0)(

)1(0)(

4

23

3

13

4

23

2

2

3

13
11

a

n
nnnn

i
RR

RL

R
C

Q
q
V

q
D

q
T

q
T

dt
d

=
−

+
−

=
−

−

=
−

−

=
∂
∂

+
∂
∂

+
∂
∂

−







∂
∂

λλλλ

λλλ

λλλ

&&&&

&&

&&
&&

&&

78 A systems approach to circuits, measurements and control

2.2 Transformations, canonical forms and eigen-values

Introduction

We have seen how the dynamics of a linear, time invariant network may be
represented by a set of linear state-space equations, describing the behaviour of
the system as well as its output.

Consider the following set of linear equations:

 d/dt [X] = AX + BU
 d/dt [Y] = CX + DU

where X represents the state vector and Y is the output. Matrix A is the system
matrix. Matrices B, C and D represent the influence of the input on the state, the
influence of the state on the output and of the input on the output, respectively.

[We have referred to this as a standard form of representation. A standard form
is technically known as a canonical form.]

The state vector X is not unique.

An infinite number of linear transformations of X exist, which are equally valid
representations of the system.

Let us consider a simple example.

 dx1/dt = x1 + x2
 dx2/dt = x1 – x2

This is a simple second order system, with no excitation.

Now consider a new set of variables z1 and z2 such that:

 z1 = x1+ 0.4142 x2
 z2 = x1 – 2.4142 x2

Then, we have:

 x1 = 0.8536 z1 + 0.1464 z2
 x2 = 0.3536 z1 - 0.3536 z2

Chapter 2 – State and state space 79

 Substituting, we get:

 dz1/dt = 1.414 z1
 dz2/dt = -1.414 z2

What we have found is that the two systems

dx1/dt = x1 + x2
dx2/dt = x1 – x2

and

dz1/dt = 1.414 z1
dz2/dt = -1.414 z2

are equivalent.

We have used a somewhat funny-looking transformation from X to Z, and ended
up with an unusual set of equations in Z. It is unusual because the two equations
in Z are uncoupled from each other. You will suspect that the transformation we
used is not an arbitrary one, but a very special one to yield such a result. On the
other hand, it also illustrates that there can be any number of transformations (as
long as the two relations are independent of each other) yielding new sets of
state variable, which are equally valid descriptions of the system.

The particular form of the equation that we obtained by this unusual
transformation is known as a diagonal matrix, and is of great significance in the
study of dynamic systems. This form of the system equations was made possible
because of a particular property of the system we had chosen, that it has distinct
characteristic roots or in other words, distinct eigen-values. Remember that we
found that the roots of system functions of RLC networks are simple, so that we
will not come across systems with multiple roots in the study of such systems.

We will now look at a more systematic method for the transformation of system
matrices with distinct eigen-values to diagonal form. You will find that it is not
possible to transform matrices with multiple eigen-values to diagonal form.

The Jordan canonical form is a more inclusive form (that includes the diagonal
form for matrices with distinct eigen-values) that allows us to have a common
standard or canonical form, similar to any given matrix. Matrices are said to be
similar if they have the same eigen-values.

80 A systems approach to circuits, measurements and control

2.2.1 Eigen-values and eigen-vectors

Eigen-value is a hybrid word, made up of the German ‘eigen’ (meaning
‘characteristic’) and the English ‘value’.

As its name implies, its value is characteristic of the system that it represents.
We also have other related concepts such as the characteristic equation,
characteristic roots etc.

Eigen-values are characteristic of a matrix. In the case of the system equations
that we studied, the matrix is the system matrix A.

The eigen-values are given by the solution of the equation:

0=− IA λ
We could of course look at this as the solution to the problem of finding a (non-
trivial) solution to:

xAx λ=

Let us consider the example that we already have:









−

=
11
11

A

2

02

1)1)(1(
11

11

2

±=

=−∴

−−−−=
−−

−
=−

λ

λ

λλ
λ

λ
λIA

The eigen-values are +1,414 and –1,414

These correspond to the transformed equation that we obtained, namely,

22

11

414.1
414,1

zz
zz

−=
=

&

&

or, in matrix form:

















−

=








2

1

2

1

414.10
0414.1

z
z

z
z
&

&

Chapter 2 – State and state space 81

We can obtain the eigen-values of a matrix using the function eig in MATLAB.
The following is a transcript of a MATLAB session, which calculates the eigen-
values of the above matrix:

A=[1 1; 1 –1]

A=

1 1
1 -1

lamda=eig(A)

lamda=
 -1.4142
 1.4142

Now let us try some slightly more complex examples:
















=
















=

211
221
122

100
110
011

C

B

Using MATLAB, let us evaluate their eigen-values:

B={1 1 0; 0 1 1; 0 0 1]

B=
 1 1 0
 0 1 1
 0 0 1
eig(B)

ans =

 1
 1
 1
C=[2 2 1; 1 2 2; 1 1 2]

82 A systems approach to circuits, measurements and control

C=
 2 2 1
 1 2 2
 1 1 2

eig(C)

ans =
 4.6274
 0.6863 + 0.4211i
 0.6863 - 0.4211i

These examples illustrate two other phenomena. Matrix B has three coincident
eigen-values, while C has one real eigen-value and a pair of complex eigen-
values, which are conjugates of each other.

We are now ready to look at another concept, that of eigen-vectors.

Associated with each distinct characteristic value (eigen-value) λ, there is a
characteristic vector (eigen-vector), determined up to a scalar multiple. Earlier,
we used the relationship

xAx λ=

to find the eigen-values λ, so that x is non-trivial. We will now find these values of
x, corresponding to each eigen-value.

0)(=− xIA λ
for the example considered.

With λ1 = √2, the equations are:

04142.2
04142.0

21

21

=−
=+−

xx
xx

From either of these, we can obtain

21 4142.2 xx =

[1/0.4142 is equal to 2.4142, so that both equations yield the same relationship]

If we select x2 = 1, then x1 = 2.4142.

If we normalise this vector, such that the sum of their squares is equal to 1,

Chapter 2 – State and state space 83

()

()
3827.0

14142.2
1

9239.0
6131.2
4142.2

14142.2
4142.2

222

221

=
+

=

==
+

=

x

x

If we now start with the other eigen-value
λ2 = -√2, we get:

04142.0
04142.2

21

21

=+
=+

xx
xx

Either of these will yield the relationship

21 4142.0 xx −=

We can, up to a scalar multiple, assume

1
4142.0

2

1

=
−=

x
x

After normalisation, we get:

9239.0
3827.0

2

1

=
−=

x
x

We have now calculated the two eigen-vectors of the matrix A, up to (a) scalar
multiple. They are:








−








9239.0

3827.0
'

3827.0
9239.0

We can use MATLAB to obtain the eigen-vectors of a matrix. Let us illustrate this
using the example used:

A=[1 1; 1 –1]

A =

1 1
1 -1

[V,D] = eig(A)

V =

0.3827 -0.9239
-0.9239 -0.3827

84 A systems approach to circuits, measurements and control

D =
 -1.4142 0

0 1.4142

[Note: When the function eig is used with two expected matrix responses as
here, the first answer returned is an array of eigen vectors and the second is a
diagonal matrix with eigen-values on the diagonal.]

Note that the eigen-vectors computed by MATLAB are different from the ones we
obtained, by a factor of (-1). This is because they are determined only up to a
scalar multiple, and even normalisation leaves us with this ambiguity.

>> B=[1 1 0;0 1 1; 0 0 1]

B =

 1 1 0
 0 1 1
 0 0 1

>> C=[2 2 1; 1 2 2; 1 1 2]

C =

 2 2 1
 1 2 2
 1 1 2

>> [P,Q]=eig(B)

P =

 1.0000 -1.0000 1.0000
 0 0.0000 -0.0000
 0 0 0.0000

Q =

 1 0 0
 0 1 0
 0 0 1

>> [R,S]=eig(C)

R =

 0.6404 0.7792 0.7792
 0.6044 -0.4233 + 0.3106i -0.4233 - 0.3106i
 0.4738 -0.1769 - 0.2931i -0.1769 + 0.2931i

S =

 4.6274 0 0
 0 0.6863 + 0.4211i 0
 0 0 0.6863 - 0.4211i

Chapter 2 – State and state space 85

[Note that this algorithm has not been able to compute the eigen-vectors of the
matrix B, as it has multiple eigen-values. An indication of this may be obtained by
invoking the function condeig, which returns a vector of condition numbers for the
evaluation of eigen-vectors. For a well-conditioned matrix, it should have values
close to unity.

>> condeig(B)

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.465190e-032.
> In D:\matlabR12\toolbox\matlab\matfun\condeig.m at line 30

ans =

 1.0e+031 *

 0.0000
 2.0282
 2.0282

]

2.2.2 Diagonal matrices

Let us assume that the matrix A has distinct characteristic roots or eigen-values
λ1, λ2, λ3. . . , λn. Let us further assume that the eigen-vectors associated with
these eigen-values are x1, x2, x3, . . . , xn. We will further assume that the eigen-
vectors have been normalised, so that inner product of each eigen-vector and
itself is unity:

niforxxx
n

j

i
j

ii ,1,1)(),(
1

2 === ∑
=

Consider the matrix T formed by assembling the vectors xi as columns, as
follows:

[]





















=

=

n
nnn

n

n

n

xxx

xxx

xxx

xxxxT

..
.....

..

..

|...||

21

2
2
2

1
2

1
2
1

1
1

321

86 A systems approach to circuits, measurements and control

T’, the transpose of T, would then be the matrix obtained by arranging the eigen-
vectors as rows:



























=



























=

n
n

nn

n

n

n xxx

xxx

xxx

x

x
x

T

..
.....
.....
....

..

..

.

.

.
'

21

22
2

2
1

11
2

1
1

2

1

Since the eigen-vectors are orthogonal, we have:

)())((' ij
ji xxTT δ==

 [T is thus an orthogonal matrix.]

As each of the xi are eigen-vectors, we have:

i

i
i xAx λ=

so that:

)())(('

]|.||[2
2

1
1

iji
ji

i

n
n

xxATT

xxxAT

δλλ

λλλ

==∴

=



























=∴

n

ATT

λ

λ
λ

λ

0
.

0

' 3

2

1

T’AT has eigen-values on the diagonal, and zero everywhere else. It is a
diagonal matrix.

Let us define Λ (lamda) = T’AT

Chapter 2 – State and state space 87

Pre-multiplying by T and post-multiplying by T’, we have:

 TΛT’=TT’ A TT’ = A

For the examples we considered earlier, from the MATLAB simulation, we had:

A =

 1 1

1 -1

T=

0.3827 -0.9239
 -0.9239 -0.3827

Since T is symmetric, T’ = T. and we have:

lamda =

 -1.4142 -0.0000
 -0.0000 1.4142

This, as expected, is a diagonal matrix with the eigen-values on the diagonal.
We can now get back A as TΛT’:

ans =

 1.0000 1.0000

1.00 -1.0000

2.2.3 The Jordan canonical form

We saw how symmetrical matrices with real eigen-values may be transformed to
diagonal form.

The following are two important properties of real symmetric matrices:

• The characteristic roots (eigen-values) of a real symmetric matrix are
real.

• The characteristic vectors (eigen-vectors) associated with distinct

characteristic roots of a real symmetric matrix are orthogonal.

In practice, we do come across matrices with complex eigen-values. What
difference does it make?

88 A systems approach to circuits, measurements and control

Before we proceed, we will need to agree on certain notations.

We have already used the terms symmetric matrix and transpose of a matrix.

1. A symmetric matrix is one where

jiij aa =

2. The transpose A’ of a matrix A is given by:

)(

)(

ji

ij

aA

aA

=′

=

 [For a symmetric matrix, A=A’]

3. When the elements aij of a matrix are real, we call such a matrix a real matrix.

4. The inner product of two vectors x and y is written as (xy), and is an important
scalar function of x and y. It is defined as

∑=
n

ii yxxy
1

)(

5. The complex conjugate of a complex variable x is denoted by placing a ¯
over x.

βα
βα
jx
jx

−=
+=

[For complex vectors, the product),(yx is of greater significance than the usual
inner product (x,y)]

6. Corresponding to the symmetric real matrices where A = A’, the significant
form for complex matrices is called Hermitian matrices, where:

*' AAA ==

[Parallel with the orthogonal matrices in the study of symmetric matrices, we
have the concept of unitary matrices in the study of Hermitian matrices, where
T*T = I]

Let us now consider an example of a non-symmetric matrix with real coefficients:








 −
=

12
21

A

Chapter 2 – State and state space 89

As before, we will look at a MATLAB transcript.

» A=[1 -2 ; 2 1]

A =

 1 -2
 2 1

» [T,D]=eig(A)

T =

 -0.7071 -0.7071
 0 + 0.7071i 0 - 0.7071i

D =

 1.0000 + 2.0000i 0
 0 1.0000 - 2.0000i

» TINV= inv(T)

TINV =

 -0.7071 0 - 0.7071i
 -0.7071 0 + 0.7071i

» LAMDA=TINV*A*T

LAMDA =

 1.0000 + 2.0000i 0
 0 1.0000 - 2.0000i

» T*LAMDA*TINV

ans =

 1 -2
 2 1

»
We first compute the matrix formed by the eigen-vectors (T) and one with the
eigen-values as diagonal elements (D). Note that the eigen-values are a complex
conjugate pair. We then find the inverse TINV of T. We then note that

ATT 1−=Λ

is the diagonal matrix with the eigen-values on the diagonal, the same as D.
Finally, we can get back A as:

1−Λ= TTA

90 A systems approach to circuits, measurements and control

[In this particular case, the inverse of T is equal to the transpose of its complex
conjugate, but this is not so in general, unless there are only complex roots.]

» CTRANS=ctranspose (T)

CTRANS =

 -0.7071 0 - 0.7071i
 -0.7071 0 + 0.7071i

» TINV=inv(T)

TINV =

 -0.7071 0 - 0.7071i
 -0.7071 0 + 0.7071i

Here, the transpose and the inverse are equal.

We will consider one more example.

» B=[1 2 3; 2 0 1; 1 2 0]

B =

 1 2 3
 2 0 1
 1 2 0

» [T,D]=eig(B)

T =

 -0.7581 -0.3589 - 0.4523i -0.3589 + 0.4523i
 -0.4874 -0.2122 + 0.5369i -0.2122 - 0.5369i
 -0.4332 0.5711 - 0.0847i 0.5711 + 0.0847i

D =

 4.0000 0 0
 0 -1.5000 + 0.8660i 0
 0 0 -1.5000 - 0.8660i

» CTRANS=ctranspose(T)

CTRANS =

 -0.7581 -0.4874 -0.4332
 -0.3589 + 0.4523i -0.2122 - 0.5369i 0.5711 + 0.0847i
 -0.3589 - 0.4523i -0.2122 + 0.5369i 0.5711 - 0.0847i

» TINV=inv(T)

TINV =

Chapter 2 – State and state space 91

 -0.5957 + 0.0000i -0.5957 - 0.0000i -0.5957
 -0.2826 + 0.3820i -0.1359 - 0.6071i 0.6474 + 0.0145i
 -0.2826 - 0.3820i -0.1359 + 0.6071i 0.6474 - 0.0145i

The transpose and the inverse are not the same.

» LAMDA=TINV*B*T

LAMDA =

 4.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i
 0.0000 - 0.0000i -1.5000 + 0.8660i -0.0000 - 0.0000i
 0.0000 + 0.0000i -0.0000 + 0.0000i -1.5000 - 0.8660i

» T*LAMDA*TINV

ans =

 1.0000 - 0.0000i 2.0000 + 0.0000i 3.0000 - 0.0000i
 2.0000 + 0.0000i 0 + 0.0000i 1.0000 + 0.0000i
 1.0000 - 0.0000i 2.0000 + 0.0000i 0.0000 - 0.0000i

Note that transpose of the complex conjugate of T and the inverse of T are quite
different. However, we do have a systematic method for transforming a matrix to
diagonal form. There is still one assumption we have made, that the eigen-values
are distinct.

Let us now look at the case where you get coincident eigen-values.

We will re-examine the example we considered earlier:
















=

100
110

011

C

» C=[1 1 0; 0 1 1; 0 0 1]

C =

 1 1 0
 0 1 1
 0 0 1

» eig(C)

ans =

 1
 1
 1

92 A systems approach to circuits, measurements and control

There are three coincident eigen-values, each equal to 1. If you attempt to find
the eigen-vectors, you will find that x1 may take any value, but that the other two
components are identically zero. MATLAB also gives the same result.

» [T,D]=eig(C)

T =

 1.0000 -1.0000 1.0000
 0 0.0000 -0.0000
 0 0 0.0000

D =

 1 0 0
 0 1 0
 0 0 1

T cannot be inverted, as its rank is only 1.

We are now ready to introduce the Jordan canonical form.

Definition

Let us denote by Lk(λ) a k x k matrix of the form:



























=

λ
λ

λ
λ

λ

00
1
........
....
0..010
.001

)(hL

[L1 would be equal to λ]

It can be shown that there exists a matrix T such that



























=−

)(
0

0)(

)(

2

1

1

2

1

rk

k

k

r
L

L

L

ATT

λ

λ

λ

Chapter 2 – State and state space 93

nkkk r =+++ ...21

λ1,λ2, . . .,λr are eigen-values with multiplicity k1, k2, . . . kr.

This representation (that is T-1AT) is called the Jordan Canonical Form.

The diagonal form we had for the case of distinct eigen-values obviously satisfies
this condition.

The matrix
















=

100
110
011

C

which we picked for study earlier on is already in this form.

We will now consider another example.

Consider








 −
=

14
15

A

The eigen-values of A are 3 and 3. We can then write down the Jordan canonical
form of the matrix as:









=

30
13

J

This does not, however, tell us anything of the transformation T that will yield J
from A, other than that:

ATTJ 1−=

94 A systems approach to circuits, measurements and control

2.3 Solution of network equations

Introduction

Sparse matrices are an important phenomenon in engineering. They occur
regularly in network problems, and so, special methods used in their solution are
of importance to us.

Let us consider a simple network with three nodes (that is, two node pairs) with
each node connected to the other two. If we write the nodal equations, we will
have

 YV = I

Where Y is a 2 x 2 admittance matrix and V and I are 2 x 1 vectors. All elements
of Y will be full (or have a non-zero entry.) However, if we take a circuit with ten
nodes, with each node connected to three others, we will have a 9 x 9
admittance matrix with only a maximum of 36 non-zero elements, out of a total of
81. With a large network of (say) 1000 x 1000, it is possible to have less than
5000 non-zero elements, out of a total of one Million entries. This is one instance
of how sparse matrices arise.

Common methods of solving matrix equations are quite inefficient in dealing with
sparse matrices, and special methods are in use, which exploit their special
features

We will first examine the most obvious solution of the equation we considered
earlier:

 YV=I
 V = Y-1 I

where Y-1 is the inverse of Y. Matrix inversion is computationally very inefficient,
even for a full matrix, for we have to evaluate the co-factor of each element of the
matrix. This means that a (n-1) x (n-1) determinant has to be evaluated for each
of the n2 elements of the matrix, that is a total of (n-1)n! multiplications..

We will then look at Gaussian elimination as an algorithm for the solution of a
matrix equation. We will also look at how equation ordering affects the accuracy
of the solution.

Finally, we will look at LU factorisation and Cholesky factorisation

Chapter 2 – State and state space 95

We have already examined the role of equation reordering and pivoting as a
means of improving the accuracy of computation. When considering sparse
matrices, we also need to be concerned about the need to conserve sparsity in
the solution process, We have seen how inversion tends to almost completely fill
up an originally sparse matrix, and that both Gaussian elimination and LU
factorisation sometimes introduce new non-zero elements.

If we are interested in sparsity (as a means of reducing both storage
requirements and computation time), we should consider special reordering
schemes directed towards conserving sparsity. There are a variety of such
schemes, each with its own merits and demerits. Some are very simple, and can
be implemented with minimum time and effort, but are not very effective. They
can be used when we are interested in only one run of the solution of a set of
equations. More complex methods require relatively more effort, and can be
justified when we have to resort to repeated runs.

A reordering scheme for sparse matrices to be useful will have to incorporate
reordering techniques for both reduction of round off errors and for the
preservation of sparsity.

Finally, we examine how a sparse matrix can be stored, so as to exploit its
special features. In particular, we need to develop techniques of storage and
retrieval that will reduce the total storage requirements while facilitating quick and
easy data access –that is both writing and reading. These methods are together
known as sparsity programming

2.3.1 Solution of linear state equations through
Laplace transformation

Let us consider the system of state space equations:

BuAxx +=&

Laplace transformation of these yields:

),()()0()(sBUsAXxssX +=−
where























=























=























=

)(
.
.

).(
)(

)(,

)0(
.
.

)0(
)0(

)0(;

)(
.
.

)(
)(

)(
2

1

2

1

2

1

sU

sU
sU

sU

x

x
x

x

sX

sX
sX

sX

nnn

96 A systems approach to circuits, measurements and control

{ } { })()()0()()(
)()()0()()(.,

)()0()()(

1111

11

sBUAsILxAsILtx
sBUAsIxAsIsXie

sBUxsXAsI

−−−−

−−

−+−=∴

−+−=

+=−∴

The solution consists of two parts:

• { })0()(11 xAsIL −− − , which is the contribution made by the initial

conditions. This is a transient, but it is not the complete transient.

• { })()(11 sBUAsIL −− − , which is the contribution made by the inputs to
the system.

This contribution consists of two parts itself, a transient term and a steady state
term. Both these contain the term 1)(−− AsI .
Now,

AsI
AsIadjAsI

−
−

== −)()(1

AsI − is a polynomial in s, of degree n.

Each element in)(AsIadj − is a polynomial in s, of degree (n-1) or less.

Each element of
AsI
AsIadj

−
−)(

 can be split up into partial fractions of the form:

n

n

s
b

s
b

s
b

λλλ −
++

−
+

−
...

2

21

1

if the roots of 0=− AsI are distinct, or

1

1
2

1

1

1
)(

...
)(

...
+−

−++

−
++

−
++

−
+

−
++

− qn

n
q

p

qp

p

p

p

p

s
b

s
b

s
b

s
b

s
b

λλλλλ

if there is one root of multiplicity q.

These λ’s are the eigen-values of the system, and 0=− AsI is the
characteristic equation of the system. The eigen-values are the roots of the
characteristic equation. AsI − is known as the characteristic polynomial. The
eigen-values may be either real, or they occur in complex conjugate pairs.

Chapter 2 – State and state space 97

Example:









=
















=
















=

















−
−

−
=

)(
)(

;
1
0
1

)0(

,
10
00
01

,
100
011
101

tH
tH

Ux

BA

















+
+−

−
=−

100
011
001

s
s

s
AsI

2)1)(1(+−=− ssAsI

[]
AsI
AsIadjAsI

−
−

=− −)(1

















−

−−+

+−+

+−
=

100
111

)1(0)1(

)1)(1(
1

2

2

2

2

s
ss

ss

ss

+

























+

+−
−

−

−
−

−

=

1
1

)1)(1(
1

1
1

1
1

1
1

22

2

s

sss

ss

























+

+−
−

−

−
−

−

)1(
1

)1)(1(
1

)1(
1

)1(
1

)1(
1

22

2

ss

sssss

ssss

98 A systems approach to circuits, measurements and control

























+

+−
−

+−

−
−

−

=

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

s

ssss

ss

The Laplace transform of the response due to the initial conditions =
)0()(1xAsI −−

























+

+−
−

−

−
−

−

=















































+

+−
−

+−

−
−

−

=

1
1

)1)(1(
1

1
1

1
1

1
1

1

0

1

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

22

2

s

sss

ss

s

ssss

ss

The Laplace transform of the response due to the input =

)()(1 sBUAsI −−

































































+

+−
−

+−

−
−

−

=

s

s

s

ssss

ss

1

1

10

00

01

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

























+

+−
−

−

−
−

−

=















































+

+−
−

+−

−
−

−

=

)1(
1

)1)(1(
1

)1(
1

)1(
1

)1(
1

1
0

1

1
100

)1)(1(
1

1
1

1
1

1
10

1
1

22

2

22

2

ss

sssss

ssss

s

s

s

ssss

ss

Then, the transform of the total response
= The transform of the response due to initial conditions
+ The transform of the response due to the input.

Chapter 2 – State and state space 99

=

























+
−

−

+
+

−

s

ss

ss

1
)1(2

1
)1(2

1
1

1
1

1

In the time domain, the response =

























+
−

−

+
+

−
−

s

ss

ss

L

1
)1(2

1
)1(2

1
1

1
1

1

1 =)(

1

)(
2
1 tHee

ee

tt

tt



















−

+

−

−

2.3.2 Solution of transient equations

We have studied about the methods for the solution of linear algebraic equations
that arise in the steady state solution of networks. We will now look at how
differential equations describing the transient behaviour of networks may be
handled.

Earlier, we studied about the dynamic representation of networks, through the
formulation of state space equations. Our treatment of electrical circuits was
limited to time-invariant systems, in that we assumed that parameters such as
the resistance, inductance or capacitance of an element were not functions of
time. We will continue with this assumption, and restrict our treatment to time-
invariant systems.

Analytical methods for the solution of systems of differential equations exist only
for a limited class of simple, linear equations. For the study of more complex and
non-linear systems, we need to convert the differential equations to difference
equations, and then apply numerical techniques for their solution. We will study
analytical methods for the solution of systems of differential equations and also
some numerical techniques for the solution of systems of difference equations.

100 A systems approach to circuits, measurements and control

Analytical solution of linear state equations

We have already noted the relationship between the state space representation
and the s-plane representation of a system. One approach to the solution of state
equations is through its Laplace transform.

Another approach would be through the evaluation of the matrix exponential.

As is to be expected, both these solutions are strongly influenced by the eigen-
values of the system.

Numerical solution of state equations: Solution of linear state
equations through the matrix exponential

We have seen that the solution to

BuAxx +=& is

{ } { })()()0()()(1111 sBUAsILxAsILtx −−−− −+−=

Let { })()(11 tAsIL Φ=− −−

Therefore, (by the convolution theorem):

∫ −Φ+Φ=
t

dButxttx
0

)()()0()()(τττ

We now need to evaluate Φ(t).

We will assume a power series solution for the homogeneous equation Axx =& ,
of the form:

....)(2
210 +++= tataatx

This gives:

.)..(

...32)(
2

210

2
321

+++==

+++=

tataaAAx

tataatx&

Equating coefficients of powers of t, we have:

Chapter 2 – State and state space 101

0

0
3

0
2

23

0
2

012

01

!
1

.

.
3.2

1
2
1

3
1

3
1

2
1

2
1

2
1

aA
r

a

aAaAAAaa

aAAaAAaa

Aaa

r
r =

===

===

=

We also have, by substitution t=0 in our power series,

a0 = x(0)

This gives us the solution:

)0(

)0(.]...
!3

1
!2

1[)(3322

xe

xtAtAAtItx

At=

++++=

The solution of the complete equation

BuAxx +=& is:

ττ

ττ

τττ

τ

τ

dBueexe

dBuexe

dButxttx

t AAtAt

t tAAt

t

)()0(

)()0(

)()()0()()(

0

0

)(

0

∫
∫
∫

−

−

+=

+=

−Φ+Φ=

Matrix inversion

We will consider the following equation, which we have already encountered:
















=

































++−−
−++−
−−++

0
0

3

2

1

65446

44322

62621 si

v
v
v

GGGGG
GGGGG
GGGGG

Let us assume some numerical values for each Gi and for is.
G1 = g3 = G5 = 1,
G2 = G4 = G6 = 2,
Is=1

102 A systems approach to circuits, measurements and control

Then the equations would be:
















=
































−−
−−
−−

0
0
1

522
252
225

3

2

1

v
v
v

To compute the inverse of this matrix, we need to first compute its determinant:

∆ = 5(25-4) + 2(-10-4)-2(4+10) = 49

We then have to compute the co-factor of each element ∆ij to obtain:
















=
















=

















−−−−+
−−−−−−−

+−−−−
=−

4286.02857.02857.0
2857.04286.02857.0
2857.02857.04286.0

211414
142114
141421

49
1

)425()410()104(
)410()425()410(

)104()410()425(

49
11G

Now, writing

 V=G-1 I,
We have:
















=
















2857.0
2857.0
4286.0

2

1

v
v
v

We can use MATLAB to obtain this result using:

G=[5 -2 -2;-2 5 -2;-2 -2 5]

G =

 5 -2 -2
 -2 5 -2
 -2 -2 5

Chapter 2 – State and state space 103

is=[1;0;0]

is =

 1
 0
 0

v=inv(G)*is

v =

 0.4286
 0.2857
 0.2857

We can use the “spy” instruction to plot the non-zero elements of G:

Spy(G)

and of G-1:

Spy(inv(G))

They are both full matrices and nothing (in terms of storage etc.) is gained or lost.

Now lets look at the next example we considered, of three such networks
connected in cascade. The non-zero elements of the original matrix and of its
inverse are as shown:

104 A systems approach to circuits, measurements and control





























−−
−−
−−−−

−−
−−−−

−−
−−

=

522
252
221022

252
221022

252
225

G

G=[5 -2 -2 0 0 0 0;-2 5 -2 0 0 0 0;
-2 -2 10 -2 -2 0 0;0 0 -2 5 -2 0 0;
0 0 -2 -2 10 -2 -2;0 0 0 0 -2 5 -2;
0 0 0 0 -2 -2 5]

G =

 5 -2 -2 0 0 0 0
 -2 5 -2 0 0 0 0
 -2 -2 10 -2 -2 0 0
 0 0 -2 5 -2 0 0
 0 0 -2 -2 10 -2 -2
 0 0 0 0 -2 5 -2
 0 0 0 0 -2 -2 5

>> spy(G)

>> spy(inv(G))

Chapter 2 – State and state space 105

>> inv(G)

ans =

 Columns 1 through 5

 0.3214 0.1786 0.1250 0.0714 0.0536
 0.1786 0.3214 0.1250 0.0714 0.0536
 0.1250 0.1250 0.1875 0.1071 0.0804
 0.0714 0.0714 0.1071 0.2857 0.1071
 0.0536 0.0536 0.0804 0.1071 0.1875
 0.0357 0.0357 0.0536 0.0714 0.1250
 0.0357 0.0357 0.0536 0.0714 0.1250

 Columns 6 through 7

 0.0357 0.0357
 0.0357 0.0357
 0.0536 0.0536
 0.0714 0.0714
 0.1250 0.1250
 0.3214 0.1786

0.1786 0.3214
0.1787

>> nnz(G)

ans =

 25

>> nnz(inv(G))

ans =

 49

We see that the original matrix had only 25 non-zero elements while the inverse
has 49 non-zero elements, and is full.

106 A systems approach to circuits, measurements and control

Gaussian elimination

We will study this algorithm through the example we have been considering:
















=
































−−
−−
−−

0
0
1

522
252
225

3

2

1

v
v
v

Step 1: Divide the first row by its diagonal element:
















=
































−−
−−
−−

0
0

5/1

522
252

5/25/21

3

2

1

v
v
v

Eliminate v1 from the other equations by subtracting the relevant multiples of
equation 1 from the others:
















=
































−−−
−−−

−−

5/2
5/2
5/1

5/455/420
5/425/450

5/25/21

3

2

1

v
v
v

We now repeat the process with the second row, that is first, make the diagonal
element unity, then eliminate the second variable from the third equation:
















=
































−
−
−−

5/2
21/2
5/1

5/215/140
3/210
5/25/21

3

2

1

v
v
v

















+
=

































−
−
−−

)21/2)(5/14(5/2
21/2
5/1

)3/2)(5/14(5/2100
3/210
5/25/21

3

2

1

v
v
v

Simplifying:
















=































−
−−

3/2
21/2
5/1

3/700
3/210
5/25/21

3

2

1

v
v
v

Now, normalising the last equation, we have:
















=































−
−−

7/2
21/2
5/1

100
3/210
5/25/21

3

2

1

v
v
v

Chapter 2 – State and state space 107

This gives the results as:

V3= 2/7
V2=2/21+2/3 V3 = 2/21+ 4/21 =2/7
V1= 1/5+2/5 V2 + 2/5 V3 = 1/5 +8/35 = 3/7

We are now in a position to attempt to write down the general algorithm.
Consider the (n x n) matrix A and (n x 1) vectors x and b, where x is the
unknown.

Anxnxnx1 = bnx1

Our strategy is to eliminate x1 from all the (n-1) equations, other than the first. To
do this, we first divide the first equation throughout by a11, so that the revised a11
is equal to 1.

 For i = 1 to n:

a1i = a1i / a11
 b1 = b1 / a11

Then, for each of the rows 2 to n, we subtract ai1 times the first row from each
term, in other words:

 For i = 2 to n:

 bi = bi - ai1 x b1

 For j = 1 to n:

 aij = aij – ai1 x a1j

This would mean that x1 is eliminated from all but the first equation, so that we
are left with (n-1) equations in (n-1) unknowns. We can then repeat the same
algorithm for the new (n – 1) x ((n – 1) matrix. Finally, we will be left with only one
equation, corresponding to the last variable xn:

 xn = bn

The rest of the algorithm consists of the back-substitution process, whereby xn-1
is calculated using the known value of xn, and then xn-2 is calculated, and so on
until we obtain all values up to x1.

 x n-1 = b n-1 – a n-1,n x n

For the general case:

1.,..,.2,1,
1

−−=−= ∑
+=

nnixabx
n

ij
jijii

108 A systems approach to circuits, measurements and control

This algorithm suffers from the disadvantage that the solution has to be repeated
from the very beginning even when the matrix A has not changed at all, but only
the vector b has changed. We can overcome this difficulty by actually not
carrying out the operations on b during the forward reduction, but keeping a
record of the necessary operations. This philosophy has lead to the development
of algorithms such as the LU factorisation.

The other main problem is that of ill-conditioned or badly ordered matrices.

Re-ordering the equations (row pivoting) or the variables (column pivoting) can
help to resolve problems with bad ordering.

LU Factorisation

We will consider the same example as before:
















=
































−−
−−
−−

0
0
1

522
252
225

3

2

1

v
v
v

We would wish to be able to avoid some of the disadvantages of Gaussian
elimination, in particular, the necessity to re-do all the computations in case of
having to estimate [v] for a different [i], A remaining the same.

Let us assume that we van find two matrices L and U such that:

L*U = A

L and U being lower triangular and upper triangular, respectively. Then, it would
be easy to compute x satisfying:

 L*U*x = b

in two steps. First we find y such that:

 L*y = b

Then, x such that:

 U*x = y

For the example chosen:

Chapter 2 – State and state space 109

































=
















−−
−−
−−

33

2322

131211

3231

21

00
0

1
01
001

522
252
225

u
uu
uuu

ll
l

















+++
++=

3323321331223212311131

2313212212211121

131211

uululululul
uuluulul

uuu

We can now write down each of these terms, almost by inspection:

2
2

5

13

12

11

−=
−=

=

u
u
u

5/145/422
5/215/455

5/22

23231321

22221221

211121

−=−−=⇒−=+
=−=⇒=+

−=⇒−=

uuul
uuul

lul

3/75
3/22

5/22

333323321331

3222321231

311131

=⇒=++
−=⇒−=+

−=⇒−=

uuulul
lulul

lul

We have now completed the computation of the factored form:
















−
−−

=

















−−
−=

3/700
5/145/210

225

13/25/2
015/2
001

U

L

110 A systems approach to circuits, measurements and control

We can check whether the factorisation is correct by multiplying L by U using
MATLAB:

L=[1 0 0;-2/5 1 0;-2/5 -2/3 1];
U=[5 -2 -2;0 21/5 -14/5;0 0 7/3];
A=L*U
A =

 5.0000 -2.0000 -2.0000
 -2.0000 5.0000 -2.0000
 -2.0000 -2.0000 5.0000

We can also use MATLAB to perform the LU factorisation:

[L,U]=lu(A)

L =

 1.0000 0 0
 -0.4000 1.0000 0
 -0.4000 -0.6667 1.0000

U =

 5.0000 -2.0000 -2.0000
 0 4.2000 -2.8000
 0 0 2.3333

When we need to optimise the use of storage, it is possible to store all the values
in one matrix, as it is not necessary to store either the zeros or the 1s. There is
also a distinct MATLAM command for this:

lu(A)

ans =

 5.0000 -2.0000 -2.0000
 0.4000 4.2000 -2.8000
 0.4000 0.6667 2.3333

Let us now see the effect of LU factorisation on a sparse matrix.
We will again use the example we considered earlier.

A =

 5 -2 -2 0 0 0 0
 -2 5 -2 0 0 0 0
 -2 -2 10 -2 -2 0 0
 0 0 -2 5 -2 0 0
 0 0 -2 -2 10 -2 -2
 0 0 0 0 -2 5 -2
 0 0 0 0 -2 -2 5

Chapter 2 – State and state space 111

spy(A)

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 25
» [L,U]=lu(A)

L =

 1.0000 0 0 0 0 0 0
 -0.4000 1.0000 0 0 0 0 0
 -0.4000 -0.6667 1.0000 0 0 0 0
 0 0 -0.2727 1.0000 0 0 0
 0 0 -0.2727 -0.5714 1.0000 0 0
 0 0 0 0 -0.2500 1.0000 0
 0 0 0 0 -0.2500 -0.5556 1.0000

U =

 5.0000 -2.0000 -2.0000 0 0 0 0
 0 4.2000 -2.8000 0 0 0 0
 0 0 7.3333 -2.0000 -2.0000 0 0
 0 0 0 4.4545 -2.5455 0 0
 0 0 0 0 8.0000 -2.0000 -2.0000
 0 0 0 0 0 4.5000 -2.5000
 0 0 0 0 0 0 3.1111

spy(L)

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 16
spy(U)

112 A systems approach to circuits, measurements and control

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 16
spy(lu(A))

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 25

Notice that in this particular case, there has been no increase in storage
requirements. This is only if we use one matrix to store both lower and upper
triangles, with implied storage of zero and unity values.

This is not always the case, and some non-zero elements may be introduced
during factorisation.

Compare this with the result we obtained with inversion, where the reslting matrix
was a full matrix.

spy(inv(A))

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 49

Chapter 2 – State and state space 113

Cholesky factorisation

Unlike the LU factorisation, this works only for symmetric positive definite
matrices. Similar to the procedure we adopted for the computation of the LU
factorisation, we can start with the expected result to obtain the factorisation
algorithm.

The Cholesky factorisation of a symmetric positive definite matrix A produces two
factors such that:

A = C’ * C

We will use the MATLAB command to obtain the factors of the matrix we
considered earlier:

» A=[5 -2 -2 0 -1 0 0;
-2 5 -2 0 0 0 0;
-2 -2 11 -2 -2 0 -1;
0 0 -2 5 -2 0 0;
-1 0 -2 -2 11 -2 -2;
0 0 0 0 -2 5 -2;
0 0 -1 0 -2 -2 5]

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 -1 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

» C=chol(A)

C =

 2.2361 -0.8944 -0.8944 0 -0.4472 0 0
 0 2.0494 -1.3663 0 -0.1952 0 0
 0 0 2.8868 -0.6928 -0.9238 0 -0.3464
 0 0 0 2.1260 -1.2418 0 -0.1129
 0 0 0 0 2.8925 -0.6914 -0.8505
 0 0 0 0 0 2.1265 -1.2171
 0 0 0 0 0 0 1.6317

» transpose(C)*C

ans =

 5.0000 -2.0000 -2.0000 0 -1.0000 0 0
 -2.0000 5.0000 -2.0000 0 0 0 0
 -2.0000 -2.0000 11.0000 -2.0000 -2.0000 0 -1.0000
 0 0 -2.0000 5.0000 -2.0000 0 0
 -1.0000 0 -2.0000 -2.0000 11.0000 -2.0000 -2.0000
 0 0 0 0 -2.0000 5.0000 -2.0000
 0 0 -1.0000 0 -2.0000 -2.0000 5.0000

114 A systems approach to circuits, measurements and control

We will use the MATLAB command nnz to obtain the number of non-zero
elements of A and C:

» nnz(A)

ans =

 29

» nnz(C)

ans =

 20

We will now examine the effect of re-ordering the equations on sparsity. We will
use the reordering algorithm symrcm available in MATLAB. Its description is as
follows:

SYMRCM Symmetric reverse Cuthill-McKee permutation.
 p = SYMRCM(S) returns a permutation vector p such that S(p,p)
 tends to have its diagonal elements closer to the diagonal than S.
 This is a good preordering for LU or Cholesky factorization of
 matrices that come from "long, skinny" problems. It works for
 both symmetric and asymmetric S.

» p=symrcm(A)

p =

 2 1 7 6 3 5 4

» A1=A(p,p)

A1 =

 5 -2 0 0 -2 0 0
 -2 5 0 0 -2 -1 0
 0 0 5 -2 -1 -2 0
 0 0 -2 5 0 -2 0
 -2 -2 -1 0 11 -2 -2
 0 -1 -2 -2 -2 11 -2
 0 0 0 0 -2 -2 5

» chol(A1)

ans =

 2.2361 -0.8944 0 0 -0.8944 0 0
 0 2.0494 0 0 -1.3663 -0.4880 0
 0 0 2.2361 -0.8944 -0.4472 -0.8944 0
 0 0 0 2.0494 -0.1952 -1.3663 0
 0 0 0 0 2.8452 -1.1716 -0.7029
 0 0 0 0 0 2.5928 -1.0890
 0 0 0 0 0 0 1.8221

Chapter 2 – State and state space 115

» C1=chol(A1)

C1 =

 2.2361 -0.8944 0 0 -0.8944 0 0
 0 2.0494 0 0 -1.3663 -0.4880 0
 0 0 2.2361 -0.8944 -0.4472 -0.8944 0
 0 0 0 2.0494 -0.1952 -1.3663 0
 0 0 0 0 2.8452 -1.1716 -0.7029
 0 0 0 0 0 2.5928 -1.0890
 0 0 0 0 0 0 1.8221

» nnz(C1)

ans =

 19

Compare with a different reordering algorithm:

SYMMMD Symmetric minimum degree permutation.
 p = SYMMMD(S), for a symmetric positive definite matrix S,
 returns the permutation vector p such that S(p,p) tends to have a
 sparser Cholesky factor than S. Sometimes SYMMMD works well
 for symmetric indefinite matrices too.

» q=symmmd(A)

q =

 4 1 2 6 7 3 5

» A2=A(q,q)

A2 =

 5 0 0 0 0 -2 -2
 0 5 -2 0 0 -2 -1
 0 -2 5 0 0 -2 0
 0 0 0 5 -2 0 -2
 0 0 0 -2 5 -1 -2
 -2 -2 -2 0 -1 11 -2
 -2 -1 0 -2 -2 -2 11

» C2=chol(A2)

C2 =

 2.2361 0 0 0 0 -0.8944 -0.8944
 0 2.2361 -0.8944 0 0 -0.8944 -0.4472
 0 0 2.0494 0 0 -1.3663 -0.1952
 0 0 0 2.2361 -0.8944 0 -0.8944
 0 0 0 0 2.0494 -0.4880 -1.3663
 0 0 0 0 0 2.7010 -1.5303
 0 0 0 0 0 0 2.2256

116 A systems approach to circuits, measurements and control

» nnz(C2)

ans =

 19

We end up with the same number of non-zero elements after factorisation. We
will now try a very simple reordering algorithm: reorder by rank of non-zero
elements in each row.

» r=[2 4 6 1 7 3 5]

r =

 2 4 6 1 7 3 5

» A3=A(r,r)

A3 =

 5 0 0 -2 0 -2 0
 0 5 0 0 0 -2 -2
 0 0 5 0 -2 0 -2
 -2 0 0 5 0 -2 -1
 0 0 -2 0 5 -1 -2
 -2 -2 0 -2 -1 11 -2
 0 -2 -2 -1 -2 -2 11

» C3=chol(A3)

C3 =

 2.2361 0 0 -0.8944 0 -0.8944 0
 0 2.2361 0 0 0 -0.8944 -0.8944
 0 0 2.2361 0 -0.8944 0 -0.8944
 0 0 0 2.0494 0 -1.3663 -0.4880
 0 0 0 0 2.0494 -0.4880 -1.3663
 0 0 0 0 0 2.7010 -1.5303
 0 0 0 0 0 0 2.2256

» nnz(C3)

ans =

 18

The reordering in terms of the rank order of non-zero elements gives the best
result.

Solution of ordinary differential equations
Circuits containing energy storage elements (capacitors and inductors) give rise
to systems of equations containing derivatives of currents and / or voltages. The
numerical solution of such equations is based on their conversion to difference
equations, using approximate representations.

Chapter 2 – State and state space 117

Runga-Kutta methods

There is a family of Runga-Kutta methods, each based on the Taylor series, but
differing by the number of terms of the series considered. The simplest of these
is the second-order Runga-Kutta method, which takes on one more term than the
Euler method:

30

2

000)(
!2

)()()(Rtxhtxhtxhtx +++=+ &&&

We now use the first order approximation to compute the second derivative as:

h
txhtx

tx
)()(

)(00
0

&&
&&

−+
≈

Substituting this in the first equation, we get:

2
)()(

)(
)()(

2
)()()(00

0
00

2

000
htxtx

htx
h

txhtxhtxhtxhtx
++

+=
−+

++≈+
&&&&

&

The resulting algorithm for the second order Runga-Kutta method is therefore as
follows:

Start with the initial value,)(0tx .

Evaluate)()()(000 tButAxtx +=&

Compute)()()(ˆ 0001 txhtxhtx &+=+

Evaluate)()(ˆ)(ˆ

00101 htBuhtxAhtx +++=+&

Compute)](ˆ)([
2

)()(ˆ 010002 htxtxhtxhtx +++=+ &&

Set t0 = (t0+h) and go back to step 1.

The most popular algorithm is the fourth order Runga-Kutta method, which uses
two more terms of the Taylor series expansion to obtain a more accurate
estimation.

118 A systems approach to circuits, measurements and control

You would have noted that the Taylor series also gives an estimated upper
bound of the error. This is used to implement a dynamic step length adjustment
algorithm, whereby the step length is halved if the estimate of the error exceeds
a design value, and is doubled if it falls below a specified lower limit. The
doubling of the step length is used to reduce computation effort and to reduce
numerical round-off errors. In practice, we need to trade-off between the two
types of errors to get a best estimate.

One major advantage of numerical methods is that it is not limited to linear
systems. Even though we implicitly assumed the system to be linear, by
considering the system equation to be

 BuAxx +=& ;

this is not necessary. We could evaluate the derivative of x using any linear or
non-linear expression:

),(uxfx =& .

and the algorithm would still work.

The formula for the fourth order Runga-Kutta method is as follows:

)())()
2

(4)((
6

)()(5hOhtfhtftfhtxtx ++++++=+τ

Predictor-Corrector Methods

The Predictor-Corrector is another popular family of algorithms for the numerical
solution of ordinary differential equations. As the name implies, these are a family
of itterative techniques, where you first predict the next step and then correct it
using the new estimates.

We will introduce the general philosophy of predictor-corrector methods through
a simple example. Consider the first order equation:

00)()),(()(xtxvalueinitialwithttxftx ==&

Let us define

))(,()(

)(

00

0

nhtxfnhtxx
nhtxx

nn

n

+=+=
+=

&&

Using Simpson’s rule, we can write

Chapter 2 – State and state space 119

)()4(
3

5
1111 hOxxxhxx nnnnn ++++= +−−+ &&&

But from the defining state equations, we have:

)))1((,(011 hntxfx nn ++= ++&

These two equations are solved itteratvely as predictor and corrector equations.
However, to start the operation, we need an initial estimate of xn+1. Milne’s
formula:

)()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&&

may be used to obtain an initial value for xn+1 provided we have estimates for
three previous values. Runga-Kutta method may be used to start the algorithm.
The complete algorithm then is as follows:

Starting with x0 at to, find x1 , x2 and x3 at (t+h) and (t+2h) using the Runga Kutta
algorithm.

Calculate 321 , xandxx &&& using)))1((,(011 hntxfx nn ++= ++&

Use Milne’s formula)()22(
3

4 5
2131 hOxxxhxx nnnnn ++−+= −−−+ &&& to obtain a

starting value for x4

Use the predictor-corrector pair of equations to refine the value of x4

Use Milne’s formula to obtain a starting value for the next step, refine using the
predictor-corrector formulae, and repeat.

Finite difference and finite element methods
Ordinary differential equations (the type of equations we have encountered so far
in circuit analysis and systems modelling) can be solved by transforming them
into difference equations as follows:

),(txfx =&

is replaced by

)),
2

(),
2

((ttxxf
t
x ∆

+
∆

+=
∆
∆

120 A systems approach to circuits, measurements and control

where),(tx ∆∆ are the steps in the itteration process. This can be seen as a
rather primitive version of the sophisticated algorithms such as Runga-Kutta that
we have been studying, which only take into account first order terms.
Neverthiless, it is a very efficient methos for the solution of ordinary differential
equations.

When more than one independent variable is involved, we get partial differential
equations (PDE) and the corresponding method is the finite element method.

Typically, we encounter PDEs in problems associated with electromagnetic
waves where the three space variables and time are all independent variables.
PDEs also arise in other branches of engineering, in fluid flow, heat transfer and
stree analysis, for example.

A treatment of the FEM will not be attempted here.

2.3.3 Networks with sparse matrices

Sparse matrices are generated in many engineering (and other) applications.

We will consider a few examples from arising from the formulation of circuit
equations. Consider a circuit with four nodes as shown:

is G1

G2

G3

G4

G5

G6

.

.

.

.

1 2 3

0

Writing the node equations with respect to the ground (node 0), we have:
















=

































++−−
−++−
−−++

0
0

3

2

1

65446

44322

62621 si

v
v
v

GGGGG
GGGGG
GGGGG

This can be written as:
iGv =

Chapter 2 – State and state space 121

Note that G is symmetric, and that the diagonal is probably dominant

Note also that this is not, sparse; it is in fact a full matrix.

Now let us look at a network formed by cascading two of these (except for the
current source) as follows:

G7

G2

G9

G10

G11

G12

.

.

.

.

4 5

is G1

G2

G3

G4

G5

G6

.

.

.

.

1 2 3

0

This has six nodes (including the reference node) and so five nodal equations,
with 25 possible entries. However, we note that:

Node 1 is connected to only 2 other nodes,
Node 2 is connected to only 2 other nodes,
Node 3 is connected to only 4 other nodes,
Node 4 is connected to only 2 other nodes,
Node 5 is connected to only 2 other nodes,
so that the non-zero elements of the new conductance matrix are as indicated
below:























There are eight zero elements. Out of a total of 25. If we had another of the
original networks connected in cascade, to give a 7 x 7 conductance matrix, we
would have the following pattern:





























122 A systems approach to circuits, measurements and control

There are only twenty-five non-zero elements, out of a possible total of 49, that is
the matrix is almost half empty. This of course is a particular example, but in
general, as the size of the network increases, its sparsity also increases in most
practical cases.

We define the sparsity of a matrix as the ratio between the number of zero
elements and the total number of elements. In the last case, we have a sparsity
of 24/49 = 0.49 or 49 %.

MATLAB has a number of demonstration matrices taken from real-life situations.
The “west0479” is a matrix describing connections in a model of a diffusion
column in a chemical plant. It is 479 x 479 and has 1887 non-zero elements.

The following instructions will load this matrix and set matrix A equal to it:

load west0479
A=west0479

We can examine its size and the number of non-zero elements using:

size(A)

ans =

 479 479

nnz(A)

ans =

 1887
Thus, the sparsity of this matrix is

%100*
479*479

)1887479*479(−

Using MATLAB, we can obtain this as:

Per_cent_sparsity = 100*(prod(size(A))-nnz(A))/prod(size(A))

Per_cent_sparsity =

 99.1776

We can also obtain a plot of the positions where there are non-zero entries,
similar to what we saw with the example network by using the MATLAB
command “spy”:

spy(A)

Chapter 2 – State and state space 123

Reordering for conservation of sparsity

We have already looked at pivoting for reducing round-off errors, when
considering Gaussian elimination. In addition to ensuring that the diagonal
element be non-zero (a zero diagonal element will lead to a breakdown of the
process), it is better that it be comparatively large, as this would reduce
computational errors.

We will now look at the special case of sparse matrices, where it is desirable to
maintain sparsity during he process of factorisation.

We saw that the processing of the sparse matrix considered in LU factorisation
did not result in adding new non-zero elements. This is not always so. We will
consider a slightly modified matrix to illustrate this point.





























−−−
−−
−−−−−

−−
−−−−−

−−
−−−

5220100
2520000
22112201
0025200
10221122
0000252
0010225

The non-zero elements of this matrix is shown below:

124 A systems approach to circuits, measurements and control

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 29
The non-zero elements of the matrix after LU factorisation (both lower and upper
triangles entered on one matrix, with implied unity elements on the diagonal)
obtained using MATLAB is as shown:

0 2 4 6 8

0
1
2
3
4
5
6
7
8

nz = 33
Note that there are four additional non-zero elements, which have arisen as a
result of the factorisation.

We need to look at the possibility of reducing the addition of new elements, by
proper ordering of the equations. MATLAB has two important reordering
schemes:

Reverse-Cuthill-McKee reordering scheme
Symmetric Minimum Degree scheme
They are described as follows:

SYMRCM Symmetric reverse Cuthill-McKee permutation.

p = SYMRCM(S) returns a permutation vector p such that S(p,p) tends to have its diagonal elements
closer to the diagonal than S. This is a good preordering for LU or Cholesky factorization of
matrices that come from "long, skinny" problems. It works for both symmetric and asymmetric S.

SYMMMD Symmetric minimum degree permutation.

p = SYMMMD(S), for a symmetric positive definite matrix S, returns the permutation vector p such
that S(p,p) tends to have a sparser Cholesky factor than S. Sometimes SYMMMD works well for
symmetric indefinite matrices too.

Chapter 2 – State and state space 125

They both give “better” results with the LU factorisation than the original, in that
the number of non-zero elements introduced is reduced.

However, the most obvious and the simplest reordering scheme is to order the
rows (and columns) in increasing number of non-zero elements. In this particular
case, it yields the order:

2 4 6 1 7 3 5

When the rows and columns are reordered in this manner (so that the diagonal
elements remain as diagonal elements), the new matrix is:

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 -1 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

We will compare these three reordering schemes, with respect to our example.

» p=symrcm(A)

p =

 2 1 7 6 3 5 4

» q=symmmd(A)

q =

 4 1 2 6 7 3 5

» r

r =

 2 4 6 1 7 3 5

» A1=A(p,p)

A1 =

 5 -2 0 0 -2 0 0
 -2 5 0 0 -2 -1 0
 0 0 5 -2 -1 -2 0
 0 0 -2 5 0 -2 0
 -2 -2 -1 0 11 -2 -2
 0 -1 -2 -2 -2 11 -2
 0 0 0 0 -2 -2 5

» A2=A(q,q)

126 A systems approach to circuits, measurements and control

A2 =

 5 0 0 0 0 -2 -2
 0 5 -2 0 0 -2 -1
 0 -2 5 0 0 -2 0
 0 0 0 5 -2 0 -2
 0 0 0 -2 5 -1 -2
 -2 -2 -2 0 -1 11 -2
 -2 -1 0 -2 -2 -2 11

» A3=A(r,r)

A3 =

 5 0 0 -2 0 -2 0
 0 5 0 0 0 -2 -2
 0 0 5 0 -2 0 -2
 -2 0 0 5 0 -2 -1
 0 0 -2 0 5 -1 -2
 -2 -2 0 -2 -1 11 -2
 0 -2 -2 -1 -2 -2 11

» nnz(A)

ans =

 29

» nnz(lu(A))

ans =

 33

» nnz(lu(A1))

ans =

 31

» nnz(lu(A2))

ans =

 31

» nnz(lu(A3))

ans =

 29

The fact that the simple rank-order reordering is the best in this case (as it does
not introduce any new non-zero) elements does not mean that it is always the
best. It is very much dependant on the structure of the matrix under
consideration.

Chapter 2 – State and state space 127

Intuitively, a better scheme would be to reorder the balance equations after each
row is processed, in the order of the freshly computed rank order. This is much
more time consuming, but would be justified if the factored matrix is to be
repeatedly used with new vectors (b), as is the case with (say) power system
load flow studies. A still better algorithm is to allow for the fact that some of the
original non-zero elements may actually vanish during processing due to
cancellation, and to determine the rank order at each stage, taking into account
such cancellations. This is even more time consuming than the previous method,
but may be justified under special circumstances, such as in repeated on-line
transient analysis.

Sparsity programming

The efficient storage and retrieval of sparse matrices need special programming
techniques, if we are to exploit their sparsity. We can reduce both storage and
computational requirements for the processing of such matrices by proper choice
of techniques. Some reservations have been expressed in recent times about
some of the traditional methods used, on account of the relative burdens of
computation and access times of modern personal computers. It has also been
pointed out that storage is now comparatively cheap. However, along with the
advancement of technology that has brought cheap mass storage, the
dimensions of the problems that need to be tackled has also increased.
Therefore, there is a continuing need for good and efficient programming
methods for the handling of very large sparse matrices.

MATLAB has a special collection of routines for handling sparse matrices. We
have already used some of them, without bothering about how such matrices are
stored.

Let us consider our continuing example.

» A

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 -1 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

» sparse(A)

ans =

128 A systems approach to circuits, measurements and control

 (1,1) 5
 (2,1) -2
 (3,1) -2
 (5,1) -1
 (1,2) -2
 (2,2) 5
 (3,2) -2
 (1,3) -2
 (2,3) -2
 (3,3) 11
 (4,3) -2
 (5,3) -2
 (7,3) -1
 (3,4) -2
 (4,4) 5
 (5,4) -2
 (1,5) -1
 (3,5) -2
 (4,5) -2
 (5,5) 11
 (6,5) -2
 (7,5) -2
 (5,6) -2
 (6,6) 5
 (7,6) -2
 (3,7) -1
 (5,7) -2
 (6,7) -2
 (7,7) 5

The instruction sparse (A) has converted the storage of the matrix A from its
normal form into the sparse matrix representation in MATLAB. As can be seen,
this representation uses two integer arrays to indicate the indices of each non-
zero element and another real (or complex) array to represent the value of each
element. In the case of this example, it is obviously not an efficient mode of
storage, for we have used a total of (3*29 = 87) locations to store 49 (including
zero) elements. However, it comes to its own as the size of the matrix and the
sparsity increases, as in the case of the test matrix presented earlier.

We will now consider a slightly more sophisticated mode of representation
related to this same method, which allows for the fact that the diagonal element
of most matrices of practical interest would be non-zero, and also facilitates easy
reordering.

The first column gives the values of the diagonal elements, in order, as at the
beginning. The second and the third columns give the row ordering scheme, and
at the start, it is simply 1, 2,3 etc. We will later see why we need two columns.

Chapter 2 – State and state space 129

5 1 1 2 -2 P1

5 2 2 1 -2 P2

11 3 3 1 -2 P3

5 4 4 3 -2 P4

11 5 5 1 -1 P5

5 6 6 5 -2 P6

5 7 7 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

The next set of three columns give the first non-zero off-diagonal element in each
row as a combination of three values The first of these give the column index, the
second gives the element value and the third is a pointer to the location of the
next non-zero element in the row. The pointer will be set to zero if there are no
more non-zero values.

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

3 -2 P

3 -2 0

2 -2 P

5 -2 0

3 -2 P

7 -2 0

5 -2 P

5 -1 0

4 -2 P

4 -2 P

6 -2 0

5 -2 P

6 -2 P

7 -1 0

7 -2 0

P1

P2

P3

P4

P5

P6

P7

If we now reorder the equations according to (say) the pattern r discussed earlier,
we will not move any of the values other than the pointers and reverse pointers
on the second and third columns:

r = 2 4 6 1 7 3 5

130 A systems approach to circuits, measurements and control

5 4 2 2 -2 P1

5 1 4 1 -2 P2

11 6 6 1 -2 P3

5 2 1 3 -2 P4

11 7 7 1 -1 P5

5 3 3 5 -2 P6

5 5 5 3 -1 P7

Diagonal
elements

Row pointers
and reverse

pointers

Off-diagonal elements:
Column No., Value, Pointer

.

.

.

.

The original matrix and the reordered matrix are as follows:

A =

 5 -2 -2 0 -1 0 0
 -2 5 -2 0 0 0 0
 -2 -2 11 -2 -2 0 -1
 0 0 -2 5 -2 0 0
 0 0 -2 -2 11 -2 -2
 0 0 0 0 -2 5 -2
 0 0 -1 0 -2 -2 5

>> r=[2 4 6 1 7 3 5]

r =

 2 4 6 1 7 3 5

>> A1=A(r,r)

A1 =

 5 0 0 -2 0 -2 0
 0 5 0 0 0 -2 -2
 0 0 5 0 -2 0 -2
 -2 0 0 5 0 -2 -1
 0 0 -2 0 5 -1 -2
 -2 -2 0 -2 -1 11 -2
 0 -2 -2 0 -2 -2 11

Follow the pointers and work out how the indices help you to interpret the entroes
after reordering.

