
 
1 
Transform methods 
 
Some of the different forms of a signal, obtained by transformations, are shown 
in the figure. 
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We will very briefly review the use of Fourier and Laplace transforms, and then 
have a quick look at the DFT (Discrete Fourier Transform), the FFT (Fast Fourier 
Transform, a fast computational method for evaluating the DFT) and the z 
transform. 
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1.1 The s-plane and the Laplace domain 

Introduction 
 
You are familiar with the fundamental circuit laws and how they are applied to 
both direct current and alternating current circuits. You have also used the 
Laplace transform to help you with the solution of differential equations that you 
encounter in solving circuit problems. We will commence this course with a brief 
review of the s-plane, with the intention of looking at some of the characteristic 
properties of selected circuits from a slightly different angle. A formal 
presentation of the Laplace transform will not be attempted, rather, only its 
applications in the study of circuits (and later) and control systems. 
 
We start by recognising the s-plane, a complex plane on which we can place the 
poles and zeros of a network function. (A network function is a function, which 
represents some characteristic, such as the input impedance, of the network. We 
will deal with each of these ideas later on.) The s-plane is a complex plane, 
whose coordinates are the real part σ and the so-called “imaginary” part jω 
 
We can represent any function of the complex variable s (= σ+ jω ) by its poles 
and zeros, if we disregard any multiplying factors. The poles are those values of 
s for which the function goes to infinity, and zeros are those values of s for which 
the function vanishes. 

The general complex exponential excitation function 
You have studied the behaviour of circuits under different excitations, by dc, ac 
and special functions such as impulse and step functions (In practice, we have 
only approximations to these special functions, as sudden changes are not 
possible in real life.) We will now look at a more general excitation function that 
can be used to study the behaviour of circuits in a more convenient and uniform 
manner. 
 
Consider the general complex exponential excitation function, x(t) = X es0t u-1(t). 
 
u-1(t) represents a unit step function at the origin, and is introduced to ensure that 
the excitation is applied at time zero. We are only interested in causal systems, 
that is, where the response occurs only after the excitation. The complex variable 
s0 (= σ0+ jω0) is general enough to represent most types of input that we are 
interested in, and in particular, sinusoidal inputs. 
 
With σ0 zero, we have a pure, steady, sinusoid; while with ω0 zero, it is either an 
exponentially growing or an exponentially decaying quantity, depending on 
whether σ0 is positive or negative. With complex s0, we would have either 
growing or decaying sinusoids. 
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Network functions 
We said earlier that a network function is a function, which represents some 
characteristic, such as the input impedance, of a network. Let us now look at this 
in a little more detail. 
 
The simplest network that we can think of is a single-element, two-terminal 
network, such as a resistor. The characteristics of a resistor are described by the 
Ohm’s Law equation: 
 
 v = iR 
 
Where v is the voltage difference across the resistor, i is the current through it, 
and R is its resistance, which defines the relationship between v and i. With 
inductors (inductance L) and capacitors (capacitance C), we have relationships 
that are dependant on rates of change, giving rise to differential equations: 
 
 v = L di / dt for an inductor 
 i = C dv / dt for a capacitor 
 
Taking Laplace transforms (assuming zero initial conditions), we get: 
 
 V(s) = [Ls] I(s)  for an inductor 
 V(s) = [1/Cs] I(s) for a capacitor 
 
We can now write the relationship between voltage and current for resistors, 
inductors or capacitors (or any combination of them) as: 
 V(s) = Z(s) I(s) 
Or Z(s) = V(s) / I(s) 
 
Z(s), a function of the complex variable s, is known as the impedance of the two-
terminal network. We also have Y(s), the inverse of Z(s) defined by the 
relationship 
 
 Y(s) = I(s) / V(s) 
 
Y(s) is known as the admittance of the network. 
 
We can visualise a two-terminal network as a single-port network. If it is to be 
excited by a source, the source has to be connected across the two terminals, 
thus making it appear as a single port to the source. Most networks, if they are to 
accomplish any useful purpose, have to have more than one port. A network may 
be connected between (say) a source and a load to achieve some desired 
connectivity characteristic, a kind of transformation. We then have, at the 
simplest, two-port networks with just one pair of ports, which we naturally identify 
as the input port and the output port. A complex network is made up of 
interconnections of a large number of such networks, not necessarily two-port 
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networks. However, multi-port networks can, in most cases, be analysed using 
two-port network theory, and we confine our attention to them in this course. 
 
We saw earlier how impedance and admittance functions can describe a single-
port network. In a two-port network, we would naturally have to extend these 
concepts to both ports, so that we will have: 
 
 Input impedance 
 Input admittance 
 Output impedance 
 Output admittance 
 Transfer impedance and admittance 
  
as functions that characterise the network. There are other functions too which 
are of significance, such as: 
 
 Transfer function 
 Characteristic impedance 

Scattering matrix, which defines the relationship between the incident 
power and the reflected power. 

 
Some of these ideas will be discussed later. 
 
We arrived at the concept of network function through the Laplace transform. The 
system function of a network (a network function) is a function of the complex 
frequency s, representing the ratio of the Laplace transform of a response to the 
Laplace transform of the excitation causing the response. We assume that the 
network is initially relaxed, that is the stored energy in the network is initially zero. 

Pole-zero patterns 
The most general form of a system function is given by a real rational function of 
s. It can be expressed as the quotient of two polynomials in s. Such a function is 
completely described by its poles, zeros and a multiplier factor.  
 
Let us examine such a function, H(s). 
 

H(s) = q(s) / p(s), where 
 

q(s) = bm(s-z1)(s-z2) .  .  .  (s-zm) 
p(s) = (s-p1)(s-p2)  .  .  .  .  (s-pn) 

 
The finite zeros of H(s) are z1,z2, . . . , zm while its finite poles are at p1, p2, .  .  . , 
pn. In addition to these finite poles and zeros, you can see that there would be 
additional poles or zeros at infinity, depending whether m>n or n>m, of order  
(m-n) or (n-m). 
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A study of the pole-zero pattern of a system (or network) function gives us an 
insight into its behaviour. For example, an examination of the driving point 
impedance function of a one-port network will define its impedance at all natural 
frequencies, and enable us to obtain a physical realisation of the impedance 
using actual components. Similarly, it is possible for us to obtain both the 
frequency characteristics and a physical realisation of a two-port filter network, 
given its pole zero pattern. 
 
As a network function is completely defined by its poles and zeros, they are 
called the critical frequencies of the system function. The (finite) poles of the 
system function correspond to the natural frequencies of the network, that is the 
frequencies of natural oscillations. These are also known as the natural modes of 
the network. 
 
The order of a system function is the highest order (in s) of the denominator or 
the numerator, and gives an indication of its complexity. 

Properties of LC, RC & RLC network functions 
 
Before considering the properties of passive network functions such as those of 
LC, RC and RLC networks, we need to be familiar with what are known as 
positive real functions.  
 
LC, RC and RLC network functions all have certain common properties.  
 
All these system functions, whether immitance (impedance or admittance) 
functions or transfer functions, are quotients of two polynomials in s, with real 
rational coefficients. They are thus real rational functions. 
 
They are all passive functions, with no intrinsic energy sources. Hence, if viewed 
as response functions to an impulse excitation, they cannot diverge without limit. 
Therefore, they cannot have poles (or zeros) on the right-half plane, nor can they 
have multiple-order poles on the j axes.  
 
They obey the reciprocity theorem. Thus, any two impedances obtained by 
interchanging the points of excitation and response are equal. This would mean 
that the resulting matrices are symmetric. 
 
Let us now look at each of these types of networks. 
 
The following properties of an LC network may be derived: 
 
 They are simple, that is there are no higher order poles or zeros. 
 They all lie on the j axis. 
 Poles and zeros alternate. 



6 A systems approach to circuits, measurements and control 

The origin and infinity are always critical frequencies, that is, there will be 
a pole or zero at both the origin and at infinity. 

 The multiplicative constant is positive. 
 
RC (and RL) network functions have characteristics that are different from those 
of LC networks. Since an RC network has resistive components, it cannot have a 
zero-valued impedance at any real frequency. Its zeros (and poles) are on the 
non-positive σ axis of the s-plane. It should also be noted that the form of the 
impedance function is different from that of the admittance function, unlike in the 
case of the LC network. However, the impedance function of an RC network is 
similar in form to the admittance function of an RL network, and vice versa. 
 

The poles and zeros of an RC driving point function lie on the non-
positive real axis. 
They are simple. 
Poles and zeros alternate. 
The slopes of impedance functions are negative, those of admittance 
functions are positive. 

Energy functions 
 
Energy functions or “energy-like-functions” may be used for the derivation of 
properties of driving point impedance and admittance functions of passive 
networks. When s = jω, these functions are directly related to the energy stored 
in the network, as currents through inductances or voltages across capacitances, 
that is, as electromagnetic or electrostatic energy.  
 
These functions are positive semi-definite functions. 
 
We define three functions T, F and V, corresponding to the kinetic, dissipation 
and potential energies as follows: 
 
Consider the loop equations, in matrix form: 
 

[Z] [I]  = [E]  
 

where    [Z] = s[L] + [R] + [S] / s,   
 
(S is the loop elastance, the reciprocal of loop capacitance) 
 
Pre-multiplying both sides of the equation by the transpose of the complex 
conjugate of [I] will yield an energy-like expression with three terms (denoted by 
T, F and V) related to the inductance, resistance and elastance of the loop 
circuits. 
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We may define another set of parallel functions V*, F* and T* starting with the 
node-pair equations: 
 
    [Y] [E] = [I] 
 
Again, pre-multiplying both sides by the transpose of the complex conjugate of 
[E],we obtain the expressions for V*, F* and T*. 
 
The two derivations give us two forms of the energy function as: 
 
    sT + F + V/s 
    sV* + F* + T*/s 
 
These may be used to evaluate the driving point impedances and admittances by 
imposing suitable conditions. 
 

1.1.1 The s-plane 
 
The s-plane is a complex plane (axes σ and jω) as shown in the figure. 

The s-plane
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Any point s0 on the plane will have two coordinates σ0 and jω0 as shown. They 
are known as the “real” part and the “imaginary” part of the complex number s0 (= 
σ0 + jω0). However, there is nothing more real in the real part than in the 
imaginary, both are real enough. This terminology has arisen due to historical 
reasons, and should be treated as mere names, with no significance in the 
meaning. 
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s0 can also be represented in polar form, as having a magnitude  s0 , and angle 
θ. This of course further illustrates that all quantities are real in the normal 
meaning of the word. 
 
The relationships among these various quantities are obvious from the diagram: 
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We can represent a function of a complex variable s (= σ + jω). by its poles and 
zeros. By poles we mean those values of s for which the function becomes 
infinite, that is, its denominator becomes zero; and by zeros we mean those 
values of s for which the function vanishes, that is, the numerator becomes zero. 

-1,0

-2,-3

-2,3

-6,0

The s-plane

σ

ωj

zeros

poles

[ ][ ]

134
)67(

)32()32(
)6)(1(

2

2

++
++

=

−−−+−−
++

ss
ssk

jsjs
ssk

Function represented
by poles and zeros:

  
 
The poles are marked by crosses (r) and zeros by noughts (O) as shown. Note 
that any multiplying factor (k, in the illustration) is not represented on the s-plane 
plot
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1.1.2 The general complex exponential excitation 
function 

 
The behaviour of the general exponential excitation function 
 
x(t) = X es0t u-1(t).  
 
for s0 lying in different parts of the s-plane is shown in the figure. 
 

The s-plane

σ

ωj

 
 
With σ0 zero, we have a pure, steady, sinusoid; while with ω0 zero, it is either an 
exponentially growing or an exponentially decaying function, depending on 
whether σ0 is positive or negative. With complex s0, we would have either 
growing or decaying sinusoids. 
 
Fourier analysis enables us to express any repetitive waveform as the 
summation of a series of sinusoids, with arbitrary accuracy. Thus, any required 
repetitive excitation pattern might be implemented using the general complex 
exponential excitation. This also applies to non-repetitive waveforms, as they can 
be treated as repetitive waveforms with an infinite period. The use of the complex 
excitation function further enable us to decay any component of the excitation, 
using the real part of the complex exponential.  
 
With s0 equal to zero and X equal to one, we can obtain the unit step function. 
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1.1.3 Two-port networks 
 

Two-port network

I2

V2

I1

V1

 
 
 
Consider a two-port network as shown. 
 
The driving point impedance (or the input impedance) looking in at port 1 would 
obviously depend on the type of termination at port 2. If we recognise port 1 as 
the input and port 2 as the output, it is usual to compute the driving point 
impedance at port 1 with port 2 open circuited, that is, with I2 equal to zero. 
 
We can describe the behaviour of the two-port network by the following set of two 
equations: 
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The z’s are called the open circuit impedances. As noted earlier, when I2 is zero, 
we have, from the first equation: 
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z11 is the driving point impedance at port 1, or the input impedance of the 
network, looking at port 1. z21 is a transfer impedance. 
 
Similarly, with I1 zero, we obtain: 
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We could have described the network in terms of admittances, instead of 
impedances, as given below: 
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We saw earlier why the impedances z11, z12, z21 and z22 are known as open 
circuit impedances, for we obtained them by setting I1 and I2 equal to zero. 
Similarly, the admittance functions turn out to be short circuit admittances. 
 
With V2 equal to zero, we have: 
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and setting V1 to zero gives: 
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Other representations of two-port networks are also in use. One such is the 
hybrid parameter representation used in electronic circuit analysis. 
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ABCD representation is commonly used in the study of transmission lines. Here, 
the current I2 is, by convention, shown as leaving the network rather than as 
entering the network. 
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1.1.4 Positive real functions 
 
A complex function G(s) is said to be positive real when: 
 
G(s) is real for all real s 
Re (G(s)) ≥ 0, for Re(s) ≥ 0 
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The driving point function of any physical network is positive real, and every 
rational function that is positive real can be realised as the driving point function 
of a network. Hence, the study of such functions is important in the study of 
networks. 
 
If G is positive real, then 1/G is also positive real. 
 
It can be shown that G(s) is positive real if it satisfies the following conditions: 
 

1. G(s) is real for all real s 
2. G(s) is analytic in the right-half plane. 
3. Any poles on the j axis are simple, with real positive residues. 
4. Re (G(jω)) ≥ 0 for all ω 

 
All conditions relating to poles also apply to zeros, as 1/G also has to be positive 
real. 
 
The following properties of positive real functions may be deduced from these 
conditions: 
 
No negative coefficients occur in either the numerator or denominator. 
 
The highest (and lowest) powers of the numerator and denominator cannot differ 
by more than unity. 
 
Poles (and zeros) on the j axes occur in conjugate pairs. 
 

1.1.5 Positive semi-definite functions 
 
We define a positive semi-definite function as one which is always either positive 
or zero. We will consider only quadratic forms in the present situation. 
 
All the terms of a quadratic form are of the second order. In matrix form, we can 
represent a quadratic form as: 
 

XAX T  
 
where X is a column vector and A is a symmetric matrix. 
 
(Note: We will confine our attention to symmetric matrices, and both X and A are 
real) 
 
The following definitions and properties apply: 
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1. A real matrix A is said to be positive semi-definite if and only if  
 

0≥XAX T  
 

 for all real and finite X 
 
 
2. A is said to be positive definite if and only if it is positive semi-definite, and in 
addition 
 

0=XAX T  
 

only if X=0 
 
3. For A to be positive definite, each of its principal minors should be positive. 
(This may be tested by testing a set of determinants obtained by deleting 
successive rows and columns from A for positiveness.) 
 
4. For A to be positive semi-definite, each of its principal minors should be non-
negative.  

1.1.6 Properties of RC networks 

The s-plane

σ

ωj

 
The figure shows a typical pole-zero pattern of the impedance function of an RC 
network. Note that: 
 

The poles and zeros are simple. 
They all lie on the non-positive σ- axis. 

 Poles and zeros alternate. 
 
The plot of impedance vs’ σ, along the non-positive real axis is shown below. 
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 Z

 
 
Note that there is a critical frequency at infinity, but not at the origin, in this 
particular case 
 
In general, the critical frequency of the smallest magnitude is a pole, lying on the 
non-positive (that is, at the origin or on the negative) real axis. 
 
When the number of finite poles is greater than the number of finite zeros, there 
will be a zero at infinity, as is the case in the example (two finite poles and only 
one finite zero). When the degrees of the numerator and denominator 
polynomials are equal, there will be no critical frequency at infinity. Driving point 
impedance functions of RC networks have negative gradients along the σ axis. 

1.1.7 Properties of LC networks. 

The s-plane

σ

ωj

 
The figure shows a typical pole-zero pattern of the impedance function of an LC 
network 
 
Note that  
 
 The poles and zeros are simple. 
 They all lie on the jω axis. 
 Poles and zeros alternate. 



Chapter 1 – Transform methods 15 

 
The variation of impedance with frequency corresponding to this pole-zero 
pattern may be obtained by substituting jω for s, and is as shown below. 
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Note that there are critical frequencies at the origin and at infinity.  
 
The characteristics of driving point admittance functions of LC networks are 
similar to those of impedance functions, and may be obtained by substituting 1/s 
for s. 
 
For the impedance function considered earlier, the admittance function would 
have he following shape: 

ω

Y

 
 
Plots of other typical immitance functions of LC networks are shown below. 
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In addition to the properties mentioned earlier, you may have noticed another 
property of LC functions.  
 
They all have positive gradients, that is, the value of the function always 
increases with increase of frequency.  
 
This arises from the fact that all the residues at the poles and zeros are positive, 
that is, the partial fraction expansion of the functions all have positive 
coefficients. Substitution of s = jω and differentiation leads to this result. 
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1.2 The Fourier Transform Family 
 
Introduction 
 
We have noted that a signal can be transformed among various forms, and that it 
is advantageous to do so under certain circumstances. The information 
contained in the signal will manifest in different ways, in the different forms. 
Similarly, the characteristics of a system block in a signal flow path can also be 
represented in different ways. When dealing with time domain signals, it is 
convenient to represent a block by its impulse response, while in the frequency 
or Laplace domain; it will be represented by a transfer function.  
 
The effect of a function block on a signal in the time domain is represented by the 
impulse response of the system block, and its effect is computed by a process 
known as convolution.  
 
In this section, we will study about convolution and correlation and also about 
transformations in the discrete time domain, the DFT and its inverse IDFT. We 
will also see how it can be computed more easily using the FFT.  

The Fourier transform 
 
The frequency response of a system block is obtained by Fourier transformation 
of its impulse response, and the output (in the frequency domain) is obtained by 
multiplication of the Fourier transform of the input (frequency spectrum) and the 
frequency response of the device. Multiplication in the frequency domain is 
equivalent to convolution in the time domain, while multiplication in the time 
domain is equivalent to convolution in the frequency domain.  
 
The Fourier transform is a process that transforms between a continuous time 
domain signal and the frequency domain (The reverse process is the inverse 
Fourier transform). It cannot handle discrete signals.  
 

The Discrete Fourier Transform 
 
We will begin the study of discrete signals by looking at the sampling process in 
somewhat more detail 
 
The sampling of a continuous signal can be looked upon as multiplying it by a 
sequence of unit impulses. The result is their convolution. As noted earlier, 
convolution and multiplication are reciprocal processes in relation to Fourier 
transformation.  
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We have started this study of sampled signals on the basis of understanding the 
output obtained from a sampling-measuring device, such as a digital voltmeter. 
We now find that the technique of Fourier transformation (so useful in the study 
of continuous processes (and signals)) needs to be modified if we were to apply 
it to discrete systems.  
 
The DFT (Discrete Fourier Transform) is the parallel process of transformation 
applicable to discrete signals. By discrete, we mean here signals that have been 
turned into a sequence of numerical values, suitable for processing on a digital 
computer. Hence, the DFT itself is a numerical algorithm that performs this 
function. The FFT is a modified algorithm that takes advantage of certain 
symmetries in the DFT to make it work much faster, and is now universally used 
in the computation of the DFT. 
 

The z transform  
 
The z transform is the only other transformation in our original diagram showing 
various forms in which a signal may be represented. Similar to the relationship 
between the Laplace transform and the Fourier transform, where we can obtain 
the Laplace transform by substituting s for ejω, we can obtain the z transform from 
the discrete Fourier transform by substituting z for ejωT , 
 

1.2.1 The Fourier Transform 
 
We are familiar with the Fourier series, where a periodic function of time may be 
expressed as a summation of sinusoidal functions, defined by: 
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The Fourier Transform generalises this concept to non-periodic signals by 
extending the period T to infinity. This would mean that the fundamental 
frequency ωn tends to zero. In effect, we end up with a continuous frequency 
spectrum 
 
The Fourier Transform is defined as: 
 

∫
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and its inverse is defined as: 
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Let us evaluate the Fourier Transform of a square pulse of duration T and 
magnitude 1/T, centred on the origin. 
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Note that the dummy variable x has been introduced at the last stage, as the 
other variables no longer matter. The sinc function has the form shown below: 
 

 
 
It is instructive to look at the Fourier Transformation as consisting of four different 
situations, namely, 
 

Continuous time, repetitive  
Continuous time, non-repetitive 
Discrete time, repetitive 
Discrete time, non-repetitive 

 
As we have already seen, in the first case (continuous time, repetitive), we have 
the Fourier Series, where (time is continuous and) the frequency is discrete, 
 
In the second case, as the signal is non-repetitive, it extends to infinity, and we 
have the Fourier Transform, where both time and frequency are continuous, 
extending to infinity. 
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In the third case, we have the Discrete Fourier Transform (DFT), where both time 
and frequency are discrete. 
 
In the fourth case, the transformation again yields a continuous frequency 
spectrum extending to infinity. This is called the Discrete Time Fourier Transform 
(DTFT). 
 
The four cases are shown in the following table: 
 
Time Repetitive Non-

repetitive 
Frequency 

Continuous Fourier 
Series 

Fourier 
transform 

Discrete 

Discrete Discrete 
Fourier 
Transform 
(DFT) 

Discrete 
Time 
Fourier 
Transform 
(DTFT) 

Continuous 

 
 
 

1.2.2 The Discrete Fourier Transform (DFT) 
 
Before we consider the DFT, we will need to briefly look at operations on 
sequences. We will consider a sequence of N terms as follows: 
 
0 → f(0) 
1 → f(1) 
2 → f(2) 
3 → f(3) 
. 
k → f(k) 
. 
(N-1) → f(N-1) 
 
We can define operations between two different sequences as: 
 
Addition (You can only add sequences of the same order) 
  { } { } { })()()()( kgkfkgkf +=+  
 
Multiplication { }{ } { })()()()( kgkfkgkf =  
 
Example: {0,1,2} . {4,2,1} = {0,2,2}   
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Division is similar, except that g(k) should be non-zero. 
 
We will now go on to study the DFT. We have the Fourier Transform pair 
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where f(t) is defined in the continuous time domain. Assume that the signal is 
sampled to yield a discrete time signal f(k). We can then write directly: 
 
DFT Definition: 
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We can use the MATLAB functions fft and ifft to verify our results as follows: 
 
>> f=[0,1,2] 
 
f = 
 
     0     1     2 
 
>> F=fft(f) 
 
F = 
 
   3.0000            -1.5000 + 0.8660i  -1.5000 - 0.8660i 
 
>> f=ifft(F) 
 
f = 
 
     0     1     2 
 
Note that we get back the original sequence when we obtain the inverse DFT of 
the transformed sequence. The discrepancy in the value obtained for the 
transformed sequence is due to slightly different conventions used by different 
algorithms for the evaluation of the transform. In our formulation, the factor 1/N 
appeared in the forward transformation while MATLAB has it in the inverse 
transformation. Still others use a factor of 1/√N in both directions. 
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Periodicity 
 
If we extend the transformation beyond N, we get 
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Hence, the transformations are periodic, with period N. We can also show that: 
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There are other properties of importance, but we will not go into their details 
here. In most aspects, they are parallel to the properties of the Laplace and 
Fourier Transforms. We will look at some of these in relation to the Z Transform 
later on. 
 

1.2.3 The Fast Fourier Transform (FFT) 
 
The FFT is an algorithm for the efficient computation of the DFT. Let us take 
another look at the definition of the DFT. 
 
DFT Definition: 
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[Sometimes the scaling factor 1/N is used with the DFT as shown above, and 
sometimes with the inverse transform. Some workers use a symmetrical scaling 
factor of 1/√N with both the DFT and the IDFT] 
 
For any reasonably long sequence, this looks like a formidable task, even with 
the assistance of modern-day computers. If we attempt to implement the DFT by 
direct computation using the above definition, we will have to perform N complex 
multiplications for each term, giving a total of N2 multiplications for the complete 
DFT.  
 
The FFT attempts to simplify the computation of the DFT. 
 
We have (assuming N is even) 
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We will consider the sequence f(k) (of length N) as being composed of two 
sequences f1(k) and f2(k), each of length N/2, such that f1(k) contains all the even 
terms of f(k) while f2(k) contains all the odd terms. We also note that 
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We will now re-write the expression for F(p) in terms of f1(k) and f2(k): 
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Each of the transforms F1 and F2 can now be further broken down into two 
shorter sequences to give (F11 and F12) and (F21 and F22), each of length N/4. We 
can proceed in this manner until we reach a stage where the sequence is of 
length one, when the transform can be written down by inspection, and is the 
same as the time sequence. We then proceed in the reverse direction to 
construct the transforms of length two, four, eight etc. until we arrive at the 
transform of the original sequence. 
 
We have assumed that the sequence is of length 2n, where n is an integer, to be 
able to continually divide the sequence into two halves. When this is not so, it is 
quite simple to fill-up the sequence by the addition of trailing zeros to make it up 
to a power of 2. 
 
Example: 
 
We will consider the same example that was used to illustrate the DFT, even 
though the power of the FFT becomes useful only with high order sequences. 
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Compare this with the results obtained using the MATLAB programme below: 
 
>> f=[0 1 2 0] 
 
f = 
 
     0     1     2     0 
 
>> F=fft(f) 
 
F = 
 
  Columns 1 through 3  
 
   3.0000            -2.0000 - 1.0000i   1.0000           
 
  Column 4  
 
  -2.0000 + 1.0000i 
 
>> f=ifft(F) 
 
f = 
 
     0     1     2     0 
 
As before, they differ by a multiplying factor (4 in this case) due to the differences 
in the definitions used. I have obtained the inverse transform using MATLAB to 
confirm the correctness of the computation. 
 
It differs from the DFT of {0, 1, 2} obtained earlier because of the differences in 
the discrete frequencies computed. This can be further illustrated by computing 
the FFT of the sequence obtained by extending the series to a length of 8 with 
additional zeros: 
 
>> f=[0 1 2 0 0 0 0 0] 
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f = 
 
     0     1     2     0     0     0     0     0 
 
>> F=fft(f) 
 
F = 
 
  Columns 1 through 3  
 
   3.0000             0.7071 - 2.7071i  -2.0000 - 1.0000i 
 
  Columns 4 through 6  
 
  -0.7071 + 1.2929i   1.0000            -0.7071 - 1.2929i 
 
  Columns 7 through 8  
 
  -2.0000 + 1.0000i   0.7071 + 2.7071i 
 
The values for alternate frequencies coincide with those of the previous 
computation, as expected. 
 
With the radix-two computation (that is, subdividing the sequence into two equal 
parts every time) the total amount of computation is drastically reduced. We have 
N log2 N multiplications in place of the original N2. For example, if N is 210 
(=1024), the number of multiplications comes down from 220 to 10 x 210, a factor 
of more than a 100. For longer sequences, the saving is much more. 

A diagrammatic representation of the FFT 
The above algorithm may be better understood when it is presented in 
diagrammatic form, known as the Butterfly diagram. (What we have considered 
in the previous section is known as the decimation in time algorithm, and there is 
another parallel one known as decimation in frequency.) We will now consider a 
diagrammatic representation for the decimation in time algorithm of a sequence 
of length eight. 
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The original time sequence {f(0), f(1), f(2), f(3), f(4), f(5), f(6),f(7)} of length eight 
has got “decimated in time” to eight sequences {f(0)}, {f(4)}, {f(2)}, {f(6)}, {f(1)}, 
{f(5)}, {f(3)}, and {f(7)} each of length one. 
 
We will now examine the nature of the “ twiddle factor 8ω ” which operates as a 

multiplying factor in generating the transformed sequences. 8/2
8

je πω =  may be 
represented graphically on the complex plane as shown: 
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The weights, arrows and the central “butterfly” are interpreted as given in the 
following diagram: 
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We then form the successive transforms as shown below, where the definition 
used has the factor 1/N in the inverse transform and not the forward transform. 
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The reordering of the input sequence can be easily accomplished by using a trick 
known as “bit reversing”. For the sequence of length considered, the original 
order, in binary form is: 

000, 001, 010, 011, 100, 101, 110, 111 
With the bits reversed, we end up with: 

000, 100, 010, 110, 001, 101, 011, 111 
This gives the required order 0, 4, 2, 6, 1, 5, 3, 7 
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1.3 The z operator, difference equations and the z 
transform 

 
Let us look at a continuous signal (as a function of time t) that has been sampled 
at regular intervals T apart, that is, at time 0, T, 2T, 3T. . . etc. 
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We can represent this by a sequence such as (say): 
 
f(nT) = {20, 42, 21, 20, 15, -10, 5, 15} 
 
What would be the sequence obtained if the original sequence were delayed by a 
single time interval T? Let us denote it by f(nT-T) or f((n-1)T): 
 
f(nT-T)= (0, 20, 42, 21, 20, 15, -10, 5, 15} 
 
[The zero at the start is introduced on the assumption that we are only dealing 
with causal systems.] 
 

Unit time delay T
f(nT) f(nT-T)

-1z
f(nT) f(nT-T)
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We use the above representation for denoting a unit time delay. Here z-1 is 
simply an operator that delays a signal by one time step. 
 
With this notation established, we will now look at difference equations describing 
the processing of sequences of discrete signals.  
 
Let us consider a system with impulse response h(nT): 
 

h(nT)

 
 
If a unit impulse is presented to this, we will get an output similar to the above 
sequence. Now, what would happen if we present two unit impulses, one after 
the other?  
 
In response to the first impulse, we will get a response similar to what we got 
before. In response to the second impulse, we will get another sequence, similar 
to the first, but delayed by one period. 
 
If the system is linear, the two responses will add up, and we get a sequence as 
shown: 
 

h(nT)

h(nT)

x(nT) y(nT)

x(nT) y(nT) +

 ⇒  
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Note that the sequence is now longer, as the two responses are displaced by 
one period. In general, if x is of length n and h is of length m, the response will be 
of length (n+m-1). 
 
Here we considered x to be sequences of unit impulses. If they were of arbitrary 
magnitude, then, the corresponding responses would be obtained by multiplying 
the impulse response by these magnitudes. We can then write: 
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for linear, time-invariant systems. If in addition, the system is causal, we may 
restrict the summing interval to give: 
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This is the convolution summation of x and h. By change of variable, it may also 
be written as: 
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Thus we will have: 
 
y(0) = x(0) h(0) 
y(T) = x(0) h(T)+x(T) h(0) 
y(2T) = x(0) h(2T) + x(T) h(T) + x(2T) h(0) 
 
etc. 
 
The above convolution summation may also be seen as an equivalent 
multiplication in the transformed z plane. However before we look at that 
interpretation, we will look at a few extremely simple filters with our z-operator 
notation. 
 

T

+

+
x(nT)

x(nT-T)

y(nT)
=x(nT)+x(nt-T)
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We can write: 
 

)()()( TnTxnTxnTy −+=  
 
If we now use the z-operator to denote the time delay, and if we represent x(nT) 
and y(nT) by their transforms, we can write: 
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Here, H(z) corresponds to, and is the transform of the impulse function h(nT) 
which we met earlier.  
 
The two relationships 
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and  
 
Y(z) = H(z) X(z) 
 
are equivalent. 
 
We will now look at what a time delay of T means in the Laplace domain. 
 
Starting with the definition of the Laplace transform, we have: 
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A time delay of T is equivalent to multiplying by e-sT in the Laplace domain. Since 
we defined the z-1 operator as a time delay of T, we will now define the z 
transform by replacing e-sT by z-1 (or esT by z): 
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[The integral changes to summation as we are only interested in discrete time 
instances where t = nT.] 
 
With z = esT , let us consider the mapping of the s-plane to the z-plane. 
 
If s=jω, z= ejωT = cos ωT + j sin ωT. 
 
This is a unit phasor, with angle θ =  ωT 

jw

s-plane z-plane

 
 
Thus, the jω axis of the s-plane maps on to the unit circle of the z-plane.  
 
When ω = 0, θ = 0.  
When ω = π /T, θ = π 
When ω = - π /T, θ = - π 
 
As ω goes from - π /T to π /T, the circle on the z-plane completes one cycle. As ω 
goes from -∞ to + ∞, the circle is traversed an infinite number of times, so that the 
mapping from the s-plane to the z-plane is obviously not one-to-one. 
 
Let us now study the strip of the s-plane lying between - π /T and π /T. We have 
already seen that when the real part of s is zero, the imaginary axis of the s-
p;ane is mapped on to the unit circle on the z-plane.  
 
When s = σ+ jω, 
 
z= e(σ+jω)T = eσT  (cos ωT + j sin ωT). 
 
On the left half of the s-plane (σ negative), we have the magnitude of the rotating 
phasor less than unity (going from zero at σ = - ∞ to one at σ = 0), and on the 
right half of the s-plane, we have its magnitude going from one (at σ = 0) to ∞ (at 
σ = ∞). 
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jw

s-plane z-plane
pi/T

-pi/T

The unit
circle

 
 
Each strip of height 2π/T on the s-plane maps on to the complete z-plane, with 
the left half mapping on to the inside of the unit circle, and the right half on to the 
outside of the unit circle. 

1.3.1 Convolution 
 
We will restate what was said about the output of a system block being the 
convolution of the input signal and the impulse response of the system block in 
mathematical form, with the unit delta function as the input signal δ(t), where. δ(t) 
is defined as: 
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Alternatively, we may define δ(t) by its property of extracting the value of a 
function at t=0: 
 
 )0()()( xttx =δ  
 
or, more generally,  
 

)()()( 00 txtttx =−δ  
 

System with
impulse response

h(t)

Input = unit
delta function

Output =
h(t)

 
 
If the input to a system is the unit delta function, then its output is the impulse 
response of the system. 
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In practice, we are concerned only with causal signals, (a causal signal is one 
arising out of a cause, and so will be zero for all time less than zero), so that we 
can define: 
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)()()( ττδτ dtxtx  

 
The output y(t) for an arbitrary (but well-behaved) input x(t) is given by: 
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This is known as the convolution of x(t) and h(t). 
 

System with
impulse response

h(t)

Input = x(t) Output
y(t) =  x(t)*h(t)

 
 
We will assume that the integrals exist, that is: 
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Using the definition 
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of convolution, it is easy to show that it is commutative, associative and 
distributive. 
 
Using the notation: 
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to indicate the Fourier transform and the inverse Fourier transform, we can also 
show that: 
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 x(t) * y(t) ↔ X(jω) Y(jω) 
 
 x(t)  y(t) ↔ X(jω) * Y(jω) 
 
With this background, we will now look at the sampling of a continuous signal x(t) 
as a process of multiplication (or modulation) by an ideal sampler. 
 

x(t) x*(t)

c(t)

c(t)

x(t)

x*(t)

x(nT)

 
 
The diagram represents an ideal sampler, a continuous time signal x(t), the 
sampling function c(t), the sampled signal x*(t) and the discrete signal x(nT). The 
interval between samples is T.  
 
By looking at the sampler as a modulator, we may write: 
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Fourier transforming this we get: 
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We will need the convolution integral (which we stated, without proof earlier) to 
continue. We will consider its proof first: 
 
It was stated that convolution in the time domain is equivalent to multiplication in 
the Laplace domain. 
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Starting from the definition: 
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[Note: Limits of integration have been extended from t to ∝, after multiplying by 
delayed unit step.] 
 
By interchanging the order of integration, 
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−−= ∫ ∫ )()()()(

0 0
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By changing the variable of integration, we can then write: 
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1.3.2 Z Transforms 
 
Continuous time    ⇔ Laplace Transform 
 
Discrete time     ⇔ Z Transform 
 
 
The dynamics of linear discrete time control systems are described by linear 
difference equations 
 
Difference equations ⇒ Algebraic equations 
 
Representation of discrete signals: 
 
x(0), x(T), x(2T), . . . ,x(kT), . . . 
x(0), x(1), x(2), . . . ,x(k), . . . 
 
(Sampling period T) 
 
The bilateral z transform of the discrete-time signal x(n) is defined to be  
 

: transformzBilateralznxzX
n

n −∆∑
∞

−∞=

−)()(   

 
For causal systems, we need to consider only Unilateral z transform: 
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Consider the sequence:. 
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The z transform of a signal  will always exist provided  
 

(1) the signal starts at a finite time and  
 
(2) it is asymptotically exponentially bounded, i.e., there exists a finite integer 
nf, and finite real numbers 0≥A and , such that  

 
.)( f

n nnallforAenx ≥< σ  
 
The bounding exponential may be growing with n (σ>0). These are not the most 
general conditions for existence of the z transform, but they are sufficient for our 
purposes.  
 
That is: There exists a finite integer nf and finite real numbers A ≥ 0 and σ such 
that x[n]<Aeσn for all n ≥ nf.  

Evaluating z transforms 
We will consider a few common examples. [We assume that if x(t) is 
discontinuous at any point, its value is taken to be that obtained by approaching 
from the right.] 
 
Unit Impulse (Kronecker delta) 
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Unit step 
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Unit ramp 
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Polynomial function 
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Exponential function 
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Sinusoidal function 
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Cosine function 
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Example 
 
x(kT)={0,0,0,1,1,1,0,0,….] 
 
This may be interpreted as the sum of a unit step function delayed by three 
sampling time periods and a negative unit step function delayed by six periods. 
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This could have been written down directly by inspection! 
 

Properties 
 
We did not consider the properties of the Fourier transform (or of the DFT) in 
detail, leaving it for consideration under the z transform. There are parallel 
properties among all these transforms, and here we will look at those of the z 
transform. The properties of other transforms may be deduced as and when 
necessary. 
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Multiplication by a constant 
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Multiplication by ak 
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Shifting Theorem (for n ≥ 0) 
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Complex translation 
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Initial value Theorem 
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Proof:   
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Final value Theorem 
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Complex differentiation 
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Complex integration 
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Real Convolution Theorem 
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Inverse z transform 
There are a number of techniques that can be used to obtain the inverse z 
transform. Some of these are: 
 

Direct division 
Cauchy product 
Partial fraction expansion 
Inversion 

 
We will study some of them through examples. 
 
Direct Division 
 
Expand X(z) as a power series in z-1. 
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In general we have: 
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Partial fraction expansion 
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Inversion 
 
Now let us attempt to obtain the inverse z transform. The z transform was 
defined as: 
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We now invoke Cauchy’s theorem on contour integrals: 
 









−≠
−=

== ∫ 1,0
1,1

2
1

kfor
kfor

dzz
j

I
C

k

π
 

where C is any contour enclosing the origin of the z plane and where k is an 
integer. 
 
To obtain f(nT), we multiply both sides of the equation defining F(z) by zn-1 to get: 
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The contour C has to be chosen so as to enclose all poles of F(z). For stable 
systems, where the poles are within the unit circle, w can use the unit circle as 
the contour of integration, and the integral may be evaluated by the method of 
residues. 
 
For practical applications, we usually obtain the inverse transforms from pre-
computed tables. A short table of common transforms is given below: 

Table of z Transforms 
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Let us consider the example that we took earlier: 
 

H(z)= 1+z-1 

h(nT)=δ(nT)+δ(nT-T) 
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Let us consider another example: 
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We will consider three different techniques for obtaining the inverse z transform 
of this function. 
 
 1, Long division 
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2. Partial fraction expansion 
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We can verify that these two results are identical: 
 
n=0: h(0) = 2-1 = 1 
 
n=1: h(T) =2 – ½ = 3/2 
 
n=2: h(2T) = 2 – ¼ = 7/4 
 
n=3: h(3T) = 2 – 1/8 =15/8 etc. 
 

:  
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n=0: h(0)  = 1/1(1) = 1 
 
n=1: h(T)  = 1/1 [0 – h(0) a1] = 3/2 
 
n=2: h(2T) = 1/1 [0 – {h(0) a2 + h(T) a1}] 
   
  = (-1) . ½ + 3/2 . 3/2 = 7/4 
 
n=3: h(3T) = 1/1 [0 – {h(T) a2 + h(2T) a1}] 
   
  = -(3./2 . ½ - 7/4 . 3/2) = 15/8   
etc. 
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1.3.3. The w-plane 
 
The idea of a still another transformation will need some explanation. 
 
The complex variable s (= σ + j ω) of the Laplace transform has a very natural 
place for the natural frequency ω, but this simplicity is lost with sampling and the 
resulting z transform. The relationship between z and s (z = esT) makes the 
meaning of frequency rather obscure in the z-plane. As frequency domain 
analysis has been very well developed over a long period of time, it is natural to 
want to extend these ideas and techniques to the study of sampled data 
systems. 
 
We have already noted the mapping of the s-plane to the z-plane, where a strip 
of width 2π/T (where T is the sampling period) maps on to the entire z-plane. The 
jω axis maps on to the unit circle, repeatedly. This does not facilitate the use of 
techniques such as the Bode plot, where ω is the independent variable, in the z-
plane; and has provided the motivation for the new transformation. 
 
Consider the transformation defined by: 
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From the above, we may deduce the inverse transformation as: 
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[Note that, in common with the other transformations that we discussed, different 
proportionality constants are sometimes used in the definition of the transform. 
Another common form is the following: 
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We will use the former version, without the T/2 factor.] 
 
If we consider the range of real frequencies ω, corresponding to the imaginary 
axis of the s-plane, we have: 
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We can now attempt to map the z-plane to the w-plane: 
 
  

The s-plane The z-plane The w-plane

pi / T

-pi / T

 
 
The left half strip of height 2π / T on the s-plane maps on to the inside of the unit 
circle on the z-plane. This maps on to the entire left half of the w-plane. Thus we 
see that even though similar in some senses, the s-plane and the w-plane are 
not the same. 
 
Some of the other points of interest are: 
 
-∝ on the s-plane maps on the origin on the z-plane and to (-1,0) on the w-plane. 
± j π / T on the  s-plane maps on to (-1,0) on the z-plane and ± j ∝ on the w-
plane. 
 
Even though the two planes are different from each other, the similarities allow 
us to use the w-plane as a convenient tool to study sampled data control systems 
using the classical techniques. 


