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2.1 Single Phase Power 

2.1.1 Active Power 

In direct current theory, Power  Pdc is defined as the product of the Voltage (difference) Vdc 
and the Current  Idc  as 

     Pdc  =  Vdc . Idc 

However, in alternating current theory, as the voltage v(t) and the current i(t) are 
instantaneously varying, what we would get is an instantaneous value of power p(t) given by 

     p(t)  =  v(t) . i(t) 

Under normal steady state conditions,  the instantaneous variations of voltage and current are 
sinusoidal with time at an angular frequency ω and differing in phase by an angle θ, so that 

   v(t)  =  Vmax sin ωt and i(t)  =  Imax sin (ωt - θ) 

giving an instantaneous power of 

    p(t)  = Vmax sin ωt  .  Imax sin (ωt - θ) 

p(t) will be positive when both v(t) and i(t) have the same sign, and become negative when 
they have  opposite signs.  It is periodic and would have an average value Pav given by  

 

 

 

 

 

 

The phase angle θ  arises out of the impedance angle θ of the circuit.  In the form written, θ is 
positive when the current is lagging the voltage and negative when the current is leading the 
voltage. θ  is also the phase angle difference between the voltage and current waveforms. 
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When considering a pure resistance, the voltage drop and the current through it are in phase 
and  θ = 00.  The voltage and current would always have the same sign, giving a positive 
value for the instantaneous power at all times.  Thus the average power Pav would have a 
maximum value of  Vrms Irms. 

When considering a pure inductance on the other hand, the current through it would lag the 
voltage drop across it by a phase angle of  900 so that θ = 900.  The voltage and current would 
have the same sign only half of the time, giving equal positive and negative values for the 
instantaneous power.  Thus the average power Pav would have the minimum value of 0.  

Similarly when considering a pure capacitance, the current through it would lead the voltage 
drop across it by a phase angle of  900 so that θ = -900.  The voltage and current would again 
have the same sign only half of the time, giving equal positive and negative values for the 
instantaneous power.  Thus the average power Pav would again have the minimum value of 
zero. 

The above analysis shows that Pav is no longer equal to the product of Vrms . Irms for 
alternating currents. 

Pav is defined as the Active Power (also called Real Power) P. 

Vrms  and  Irms are commonly written as V and I  and are understood to be the rms values of 
voltage and current in a.c. theory unless otherwise defined. 

 

2.1.2 Power Factor and Reactive Power 

The product  V . I is defined as the Apparent Power in alternating current work.  Since the 
apparent power is no longer equal to the Active Power the Power Factor (p.f. for short) is 
defined as the ratio of these quantities. 

 

 

In the case of sinusoidal waveforms, we can write 

 

 

so that the power factor is commonly defined as  cos θ, and the term lag or lead is associated 
with it depending on whether the current considered is lagging or leading the respective 
voltage.  θ  is known as the power factor angle. 

The relation between apparent power S and the active power P can be represented by the 
Power triangle shown in the figure 2.1. 
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The quantity Q is defined as the Reactive Power.  They have the dimension of Power and are 
measured in the unit var.  Apparent Power is measured in the unit VA.  In power systems, 
since the quantities measured are large, it is usual to express active power in MW, reactive 
power in Mvar and apparent power in MVA. 

In the case of sinusoidal waveforms, Reactive Power may also be expressed as 

Q  =  V . I  sin θ 

Like active power occuring when the voltage and the current are in phase, reactive power 
occurs when they are out of  phase by 90°.  This quadrature, or 90° out of phase can occur 
either when the current is lagging the voltage (as in an ideal inductor) or leading the voltage 
(as in an ideal capacitor).  As these are opposite forms of the reactive power, the usual 
convention is to define the reactive power absorbed by an inductive load as positive.  Thus 
the reactive power absorbed by an capacitive load is negative.  [Note: A purely Resistive load 
does not absorb any reactive power].  

 

2.1.3 Complex Power 

Complex numbers (either in polar form or cartesian form) are used to represent r.m.s. 
voltages and currents as 

 

 

Thus the apparent power S, active power P and reactive power Q  will become 

 

However in the complex form, the direct product of  V I  does not give the correct 
components of P and Q.  This is easily seen by considering the polar form which would give 
P  and  Q  corresponding to an addition of the angles (θV + θ I) and not to the required 
difference of the angles (θV - θ I). 

This can be easily corrected by considering either the complex conjugate of V or I in the 
product.  Thus 
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[These expressions can also be shown using the cartesian form of the complex numbers, 
however the derivation is not as elegant]. 

In alternating current circuits, since both voltage and  current are instantaneously changing 
sign, it is not always obvious whether at a particular port power is delivered to the circuit or 
being absorbed from it.  It is best understood by considering the circuit shown in figure 2.2. 
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If  P + j Q is calculated from V  and  I  as indicated 
using V I* then, if P > 0 active power is absorbed 
by the circuit and if P < 0 active power is supplied 
by the circuit. Similarly if Q > 0 reactive power is 
absorbed by the circuit and if Q < 0 reactive power 
is supplied by the circuit . 

2.2 Three Phase Systems 

2.2.1 Balanced Three Phase Systems - Phase and Line Quantities 

For reasons of economics, electric power is usually supplied from balanced three phase 
generators.  Ideally we would like the loads also to be equally distributed among the three 
phases giving balanced loads. 

While balanced voltages and currents each have equal magnitudes in their three phases and 
differing in phase angle by 120° from each other, balanced loads would have equal 
impedances equal not only in magnitude but also in phase angle. 

Balanced three phase systems may either consist of star connected generators and/or loads 
and delta connected generators and/or loads.  In the case of both being star, a neutral wire 
may or may not be present. 

Consider a balanced star connected source connected to a balanced star connected load by a 
4-wire line as shown in figure 2.3. 

 

 

 

 

 

 

 

 

For a balanced system, the phase currents add up to zero so that the neutral current will 
always be zero. 

Isn = Ias + Ibs + Ics = 0   for a balanced system 

Also the potential difference across SN would also be zero.  Thus the analysis of the balanced 
3-wire and the balanced 4-wire systems would be identical. 

For a balanced star connected system, 

Van , Vbn , Vcn are the phase-to-neutral or Phase Voltages VP 

Vab , Vbc , Vca are the line-to-line or  Line Voltages VL 

 Ian ,  Ibn ,  Icn are the currents in the phases or Phase Currents IP 

 Ian ,  Ibn ,  Icn are the are also the currents in lines or Line Currents IL 

Figure 2.3 - Balanced 4-wire Star Connected System 

alternating 
current 
circuit 

V I 
P + j Q 

Figure 2.2 Direction of Power Flow 

N S 

a

c b

Ec Eb 

Ea 

Zs 

Zs 

Zs Ibs 

Ics 

Ias 

Isn 

Z 

Z Z 



Power Systems  - Review of Basic Concepts Professor J R Lucas 

 4 

Using Phasor diagrams it is easily seen that the magnitudes 

 VL = √ 3 VP  and  IL =  IP  

There is also a 30° phase difference between the phase voltage and the line voltage for the 
star connection. 

In the case of the Delta connection, the voltage across a phase would be the line voltage and 
the corresponding currents in the line and phase would differ by a magnitude of √ 3 and a 
phase angle difference of  30°. 

Unless otherwise stated, the terms phase voltage and phase current would be usually taken as 
those corresponding to the balanced star connection. 

A balanced system with a phase sequence of a-b-c would mean that phase a leads phase b by 
120° which in turn leads phase c by 120°.  Since the phasors are cyclic, it would also mean 
that  phase c leads phase a  by 120°.  Thus sequences a-b-c, b-c-a  and c-a-b are the same 
while a-c-b, c-b-a and b-a-c are opposite. 

 

2.2.2 Power in Balanced Three Phase Circuits 

The power delivered by a three phase supply, or delivered to a three phase load is obtained by 
adding the power in each of the three phases.  Active power can be algebraically added with 
other active powers, and reactive power can be algebraically added with other reactive 
powers.  However, apparent power can only be added using the power triangle (i.e. adding the 
active and reactive powers individually and then obtaining the resultant). 

In a balanced system, the power associated with each phase is the same, so that we may 
obtain the total power by multiplying that of one phase by the factor 3.  Thus if VP and IP are 
the phase quantities of voltage and current, with phase power factor angle φ  then the active 
power PT in a balanced three phase circuit is given by  PT  =    3 VP  IP cos  φ  and the reactive 
power QT is given by  QT  =    3 VP  IP sin  φ. 

The terms phase voltage and phase current are dependant on the type of load (star or delta), 
whereas the line voltage and line current are independant.  Thus we usually specify the line 
voltage VL  and line current IL .  Let us see how these line quantities can be made use of to 
calculate the total power for both star-connected and delta-connected systems. 

For the Star-connected system 

VP  = VL /√ 3     and     IP  = IL  so that 

PT   =    √ 3 VL  IL cos  φ  and QT   =   √ 3 VL  IL sin  φ.  Also   ST   =    √ 3 VL  IL 

Similarly for the Delta-connected system 

VP  = VL      and     IP  = IL /√ 3      so that again 

PT   =    √ 3 VL  IL cos  φ  and QT   =   √ 3 VL  IL sin  φ.  Also   ST   =    √ 3 VL  IL 

Thus we get a unique set of expressions which does not depend on the type of connection, but 
only on the line quantities.  It must be noted that φ  is the phase angle by which the phase 
current lags the phase voltage (i.e. the power factor) and not the angle between the line 
voltage and line current. 
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2.2.3 Equivalent Circuits - Single phase and Equivalent Single Phase Circuits 

Since the information relating to one single phase gives the information relating to the other 
two phases as well in a balanced three phase circuit, it is sufficient to do calculations in a 
single phase circuit.  There are two common forms used. 

(i) Single Phase Circuit 

 

 

 

 

Figure 2.4  -  Single Phase Circuit 

This is one single phase of the three phase circuit.  There is no potential drop across the 
neutral wire as the system is balanced. 

In this cirucit,   I = IP = IL,  V = VP = VL/√3  and  S = SP = ST/3 

(ii) Equivalent Single Phase Circuit 

 

 

 

 

Figure 2.5  - Equivalent Single Phase Circuit 

Of the parameters in the single phase circuit shown in figure 2.4, the Line Voltage and the 
Total Power are the most important quantities.  It would be useful to have these quantities 
obtained directly from the circuit rather than having conversion factors of √3  and  3 
respectively.  This is achieved in the Equivalent Single Phase circuit by multiplying the 
voltage by a factor of  √3 to give line voltage directly.  However as the impedance is left as 
the phase impedance, the line current gets artificially amplified by √3.  This also increases the 
power by a factor of (√3)2, which is the required correction to get the total power. 

2.3 Per Unit Quantities 

In Power Systems calculations, it is common to use per unit (and sometimes per cent) 
quantities.  Per unit quantities are actually fractional quantities of a reference quantity.  These 
have a lot of importance as per unit quantities tend to have similar values even when the 
system voltage and rating change drastically.  The per unit system is very similar to the 
percent system, except that when percentage quantities are to be multiplied or divided 
additional factors of 100 must be brought in which are not in the original equations. 

 Spu  =  S/Sbase,  Vpu  =  V/Vbase,  Ipu  =  I/Ibase   and  Zpu  =  Z/Zbase 

Expressions such as Ohm’s Law can be applied directly in per unit quantities as well.  Since 
Voltage, Current, Impedance and Power are related, only two Base or reference quantities can 
be independently defined.  The Base quantities for the other two can be derived therefrom.  
Since Power and Voltage are the most important, they are usually chosen to define the 
independent base quantities.  
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2.3.1 Calculation for Single Phase Systems 

If  VAbase  and  Vbase  are the selected base quantities of power (complex, active or reactive) 
and voltage, then 

Base current  Ibase   =  VAbase/Vbase 

 Base Impedance Zbase  = Vbase/Ibase = Vbase
2/VAbase 

Voltages and power are usually expressed in kV and MVA, thus it is usual to select a MVAbase  
and  kVbase and to express 

Base current  Ibase   =  MVAbase/kVbase in  kA 

 Base Impedance Zbase  = kVbase
2/MVAbase in  Ω 

In these expressions, all the quantities are single phase quantities. 

2.3.2 Calculations for Three Phase Systems 

In three phase systems the line voltage and the total power are more important than the per 
phase quantities.  It is thus usual to express base quantities in terms of these. 

If  VA3φbase and  VLLbase are the three phase base power and line to line voltage respectively, 

Base current  Ibase   =  VAbase/Vbase  = 3VAbase/3Vbase   = VA3φbase/√3VLLbase 

 Base Impedance Zbase  =  Vbase
2/VAbase = 3Vbase

2/3VAbase =  VLLbase
2/VA3φbase 

and in terms of  MVA3φbase  and  kVLLbase 

Base current  Ibase   =  ΜVA3φbase/√3 kVLLbase in  kA 

 Base Impedance Zbase  = kVLLbase
2/MVA3φbase  in  Ω 

Thus in three phase, the calculations of per unit quantities becomes 

 Spu  =  Sactual(MVA)/MVA3φbase,   

Vpu  =  Vactual(kV)/kVLLbase, 

Ipu   =  Iactual(kA).√3 kVLLbase/ΜVA3φbase and   

Zpu  =  Zactual(Ω) . ΜVA3φbase/kVLLbase
2 

P and Q have the same base as S, so that Ppu = Pactual/MVA3φbase, Qpu =  Qactual/MVA3φbase.  
Similarly, R and X have the same base as Z, so that Rpu = Ractual(Ω) . ΜVA3φbase/kVLLbase

2 and 
Xpu = Xactual(Ω) . ΜVA3φbase/kVLLbase

2.  The power factor remains unchanged in per unit. 

2.3.3 Conversions from one Base to another 

It is usual to give data in per unit to its own rating.  As different components can have 
different ratings, it is necessary to convert all quantities to a common base to do arithmetic 
operations. Additions, subtractions, multiplications and divisions will give meaningful results 
only if they are to the same base.  This can be done for three phase systems as follows. 

 SpuNew   =  SpuGiven . MVA3φbaseGiven /MVA3φbaseNew,   

VpuNew  =  VpuGiven . kVLLbaseGiven/kVLLbaseNew,    and   

Zpu        =  ZpuGiven . (ΜVA3φbaseNew/ ΜVA3φbaseGiven) . (kVLLbaseGiven/kVLLbaseNew)2 
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Example: 

A 200 MVA, 13.8 kV generator has a reactance of 0.85 p.u. and is generating 1.15 pu voltage.  
Determine (a) the actual values of the line voltage, phase voltage and reactance, and (b) the 
corresponding quantities to a new base of 500 MVA, 13.5 kV. 

(a) Line voltage  =  1.15 * 13.8 =  15.87 kV 

 Phase voltage =  1.15 * 13.8/√3  = 9.16 kV 

 Reactance =  0.85 * 13.82/200  =  0.809 Ω 

(b)  Line voltage  =  1.15 * 13.8/13.5 =  1.176 pu 

 Phase voltage =  1.15 * (13.8/√3)/(13.5/√3)      =  1.176 pu 

 Reactance =  0.85 * (13.8/13.5)2/(500/200) =  0.355 pu 

 

2.3.4 Per Unit Quantities across Transformers 

Although the power rating on either side of a transformer remains the same, the voltage rating 
changes, and so does the base voltage across a transformer.  [This is like saying that full 
or100% (or 1 pu) voltage on the primary of a 220/33 kV transformer corresponds to 220 kV 
while on the secondary it corresponds to 33 kV.]  Since the power rating remains unchanged, 
the impedance and current ratings also change accordingly. 

While a common MVA3φbase can be selected for a power system, a common VLLbase must be 
chosen corresponding to a particular location and changes in proportion to the nominal 
voltage ratio whenever a transformer is encountered.  The current base changes inversely as 
the ratio.  Hence the impedance base changes as the square of the ratio. 

For a transformer with turns ratio NP:NS, base quantities change as follows. 

Quantity Primary Base Secondary Base 

Power (S, P and Q) Sbase Sbase 

Voltage (V) V1base V1base . NS/NP                 =  V2base 

Current (I) Sbase/√3V1base Sbase/√3V1base . NP/NS    =  Sbase/√3V2base 

Impedance (Z, R and X) V1base
2/Sbase V1base

2/Sbase . (NS/NP)2   = V2base
2/Sbase 

 

Example  : 

  

 

In the single line diagram shown, each three phase generator G is rated at 200 MVA, 13.8 kV 
and has reactances of 0.85 pu and are generating 1.15 pu.  Transformer T1 is rated at 500 
MVA, 13.5 kV/220 kV and has a reactance of 8%.  The transmission line has a reactance of  
7.8 Ω.  Transformer T2 has a rating of 400 MVA, 220 kV/33 kV and a reactance of 11%.  The 
load is 250 MVA at a power factor of 0.85 lag.  Convert all quantities to a common base of 
500 MVA, and 220 kV on the line and draw the circuit diagram with values expressed in pu. 

Load 

T1 T2 

G Transmission Line 

Figure 2.6 - Circuit for Example 
G 
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Solution: 

The base voltage at the generator is (220*13.5/220) 13.5 kV, and on the load side is 
(220*33/220) 33 kV. [Since we have selected the voltage base as that corresponding to the 
voltage on that side of the transformer, we automatically get the voltage on the other side of 
the transformer as the base on that side of the transformer and the above calculation is in fact 
unnecessary. 

Generators G 

Reactance of 0.85 pu corresponds 0.355 pu on 500 MVA, 13.5 kV base (see earlier example) 

Generator voltage of 1.15 corresponds to 1.176 on 500 MVA, 13.5 kV base 

Transformer T1 

Reactance of 8% (or 0.08 pu) remains unchanged as the given base is the same as the new 
chosen base. 

Transmission Line 

Reactance of 78 Ω corresponds to  7.8 * 500/2202 =  0.081 pu 

Transformer T2 

Reactance of 11% (0.11 pu) corresponds to  0.11 * 500/400 = 0.1375 pu 

(voltage base is unchanged and does not come into the calculations) 

Load 

Load of 250 MVA at a power factor of 0.85 corresponds to 250/500 = 0.5 pu at a power 
factor of 0.85 lag (power factor angle = 31.79°) 

∴     resistance of load = 0.5 * 0.85  =  0.425 pu 

and  reactance of load = 0.5 * sin 31.79° = 0.263 pu 

The circuit may be expressed in per unit as shown in figure 2.7. 

 

 

 

  j0.08                                j0.081                           j0.138        0.425 + j0.263 

1.176 pu 

1.176 pu 

0.355 

0.355 

Figure 2.7 - Circuit with per unit values 


