Analysis of Non-Sinusoidal Waveforms

Waveforms

Up to the present, we have been considering direct waveforms and sinusoidal alternating
waveforms as shown in figure 1(a) and 1(b) respectively.
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Figure 1(a) —direct waveform Figure 1(a) — sinusoidal waveform

However, many waveforms are neither direct nor sinusoidal as seen in figure 2.
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Figure 2

It can be seen that the waveforms of Figure 2 (a), (b), (c) and (d) are uni-directional, although
not purely direct. Waveforms of Figure 2 (e) and (f) are repetitive waveforms with zero mean
value, while figure2 (c), (h) and (i) are repetitive waveforms with finite mean values. Figure 2
(g) is dternating but non-repetitive and mean value is aso non-zero.

Thus we see that there are basically two groups of waveforms, those that are repetitive and
those which are non-repetitive. These will be analysed separately in the coming sections.

In a repetitive waveform, only one period “T” needs to be defined and can be broken up to a
fundamental component (corresponding to the period T) and its harmonics. A uni-directional
term (direct component) may also be present. This series of terms is known as Fourier Series
named after the French mathematician who first presented the seriesin 1822.



Fourier Series

The Fourier series states that any practical periodic function (period T or frequency wy, =
217T) can be represented as an infinite sum of sinusoidal waveforms (or sinusoids) that have
freguencies which are an integral multiple of wy.

f(t) = Fo + F1 cos (wot+ 6y) + F, cos (2w, t+ ) + F3 cos (3w, t+ 63) + F4 cos (4w, t+ 6,) +
Fscos (Sawptt+6s) +............

Usualy the series is expressed as a direct term (A/2) and a series of cosine terms and sine
terms.

f(t) = A2+ Ay CcOS Wyt + Ap COS 2wt + Az COS3wpt + Aq COS4wpt + ...
+ Bisnwy,t+ BoSn 2wyt + B3 Sin3wyt + BssSindw,t + ............
f(t)= % + E(A] cosnw, t+ B, sinnw,t)
n=1

This, along with the Superposition theorem, allows us to find the behaviour of circuits to
arbitrary periodic inputs.

Before going on to the analysis of the Fourier series, let us consider some of the genera
properties of waveforms which will comein useful in the analysis.

Symmetry in Waveforms

Many periodic waveforms exhibit symmetry. The following three types of symmetry help to
reduce tedious calculations in the analysis.

() Even symmetry
(i) Odd symmetry
(i)  Haf-wave symmetry

Even Symmetry

A function f(t) exhibits even symmetry, when the region before the y-axis is the mirror image
of the region after the y-axis.

e f(t)=f(-0)
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Figure 3 -Waveforms with Even symmetry
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The two simplest forms of the Even Function or waveform with even symmetry are the cosine
waveform and the direct waveform as shown in figure 3 (a) and (b).

It can also be seen from the waveforms seen in the figure 3 that even symmetry can exist in
both periodic and non-periodic waveforms, and that both direct terms as well as varying terms
can exist in such waveforms.

It is adso evident, that if the waveform is defined for only t > 0, the remaining part of the
waveform is automatically known by symmetry.

Odd Symmetry

A function f(t) exhibits even symmetry, when the region before the y-axis is the negative of
the mirror image of the region after the y-axis.

e f(t)= (9 f(-0)
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Figure 4 — Waveforms with Odd symmetry

The two ssimplest forms of the Odd Function or waveform with odd symmetry are the sine
waveform and the ramp waveform as shown in figure 4 (a) and (b).

It can aso be seen from the waveforms seen in the figure 4 that odd symmetry can exist in
both periodic and non-periodic waveforms, and that only varying terms can exist in such
waveforms. Note that direct terms cannot exist in odd waveforms.

It is adso evident, that if the waveform is defined for only t > 0, the remaining part of the
waveform is automatically known by the properties of symmetry.

Half-wave Symmetry

A function f(t) exhibits half-wave symmetry, when one half of the waveform is exactly equal
to the negative of the previous or the next half of the waveform.

e f)=()ft-D)=C)ft+I)
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Figure 5 — Waveforms with Half-wave symmetry
The simplest form of Half-wave Symmetry is the sinusoidal waveform as shown in figure 5(a).

It can also be seen from the waveforms in the figure 5 that half-wave symmetry can only exist
in periodic waveforms, and that only varying terms can exist in such waveforms. Note that
direct terms cannot exist in half-wave symmetrical waveforms.

It is also evident, that if the waveform is defined for only one half cycle, not necessarily
starting from t=0, the remaining half of the waveform is automaticaly known by the
properties of symmetry.

Some useful Trigonometric Properties

The sinusoidal waveform being symmetrical does not have a mean value, and thus when
integrated over a complete cycle or integra number of cycles will have zero value. From this
the following properties follow. [Note: w, T = 2]

to+T t+T

[sinwt.dt =0 Jeosw,t.dt =0
t t

to+T to+T

[sinnw,t.dt =0 Jeosnw,t.dt=0

ty t
t,+T

()

fsinnw,t.cosmw,t.dt =0 for all values of m and n

to+T (=0 whenn#m
Ismnwtsmmwtdt [T h

0 D‘z whenn=m
to*T (=0 whenn#m

cosnw t.cosmew,t.dt
I %-E whenn=m

O

Evaluation of Coefficients A, and B,
f(t)= A +Z(A]cosna) t+B,snnw,.t)
n=1

Y ou will notice that the first term of the Fourier Seriesis written as A,/2 rather than A,. This
is because it can be shown that A, can aso be evaluated using the same general expression as
for A, with n=0. It isalso worth noting that A,/2 also corresponds to the direct component of
the waveform and may be obtained directly as the mean value of the waveform.

Let us now consider the general method of evaluation of coefficients.

Theory of Electricity — Analysis of Non-sinusoidal Waveforms - Part 1 —J R Lucas — October 2001 4



Consider the integration of both sides of the Fourier series as follows.

to+T ty +T totT

If(t)mt— I—EJIH | > (A, cosnw, t + B sinnw,t) [dit

t, n=l

using the properties of trigonometric functions derived earlier, it is evident that only the first
term on the right hand side of the equation can give anon zero integral.

to+T to+T
ie If(t)ljit: Iiljjt+0:i[r
to

to

2 to+T
OA == I f (t) Lt
to+T
orfrom mean value we have = = T [ f(t) [dit which gives the same result.
Consider the integration of both sides of the Fourier series, after multiplying each term by
coS nat asfollows.
to+T to+T 0t w
If(t) [¢osnw,t [dlt = J’ —= [¢osnw,t Lait + i > (A, cosnw, t + B, sinnw,t) [tosncw,t [dit
t, n=l

using the properties of trlgonometrlc functions derived earlier, it isevident that only cos nat
term on the right hand side of the equation can give anon zero integral.

to+T

A, :$ [ f(t) [osneo,t Cdit
t0

Similarly integration of both sides of the Fourier series, after multiplying by sin nawt gives

to+T

2 .
OB, =— [f(t)&innow.t Lt
n T{ (t) A

Analysis of Symmetrical Waveforms

Even Symmetry ()

When even symmetry is present, the waveform
from 0 to T/2 aso corresponds to the mirror M T/ /WV M T/2 /MM\ t

image of the waveform from -T/2 to O.
Therefore it is useful to sdlect t, = -T/2 and
integrate fromt = —T/2.

f(t) = f(-1)

T
Figure 6 — Analaysis of even waveform

.
-2 | f (t) Leos ne,t Ldit
To

0 2 V2
%1[f(t)m:osnwtEbIt+—J’f(t)E:osnthﬂt
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If in the first part of the expression, if the variable ‘t’ is replaced by the variable ‘-t the
equation may be re-written as

_29 _ L2
A, —?&zf( t) [Cos (—ncw,t) [ dt)+_|_ gf(t) [Gos e, t [dit

Since the function iseven, f(-t) = f(t), and cos(-nwyt) = cos(nwyt).
Thus the equation may be simplified to

20 2%
A, =( )?Tﬁzf (t) @os (ncw,t) Coit +?£f(t) [Gos N, t [dit

The negative signin front of the first integral can be replaced by interchanging the upper and
lower limits of the integral. In this case it is seen that the first integral term and the second
integral term are identical. Thus

2x2"2
A :? i f (t) Leos new,t Ldit
0

Thus in the case of even symmetry, the value of A, can be calculated as twice the integra
over half the cycle from zero.

A similar analysis can be done to calculate B,,. In this case we would have
20 | 272
== T[f(—t)@n (—Neo,t) [{=dt) += [ f (t) &in no,t (et
T/2 T 0

Since the function iseven, f(-t) = f(t), and sin(-nuw,t) = — sin(nwyt).

In this case the two terms are equal in magnitude but have opposite signs so that they cancel
out.

Therefore B, = 0 for all valuesof n when the waveform has even symmetry.
Thus an even waveform will have only cosine terms and a direct term.

f(t)= % + 21'0“ cosnw,t

N
where A, 2? | f (t) [eos new,t [dlt
0

Odd Symmetry
When odd symmetry is present, the waveform

from O to T/2 also corresponds to the negated

mirror image of the waveform from —T/2 to O. ﬂ M\ - ;;\ M\ T/Z/\ VW\ t_
Therefore as for even symmetry t, = -T/2 is

selected and integrated from t = —T/2.

f(t) = - 1(-1) T
Figure 7 — Analaysis of odd waveform
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.
-2 ] f (t) Leos ne,t Ldit
To

2 0 2T/2
=— 1[f(t) [¢os naw,t Ldit + — If(t) [¢0s naw,t Ldit
T_/2 T2

In the first part of the expression, if the variable ‘t’ is replaced by the variable ‘-t it can be
easily seen that this part of the expression is exactly equal to the negative of the second part.

T T
% 2%
0 0
In asimilar way, for By, the two terms can be seen to exactly add up.

Thus

iz
B, EIf(t)@nnoutmt

Thus in the case of odd symmetry, the value of B, can be calculated as twice the integral over
half the cycle from zero.

Thus an odd waveform will have only sine terms and no direct term.

f(t):ianin nw,t

472,
where B, :?jf(t) [$in no,t Cdit
0

Half-wave Symmetry f(t)

When half-wave symmetry is present, the
waveform from (t,+T/2) to (t,+T) aso ﬂrM\ .

corresponds to the negated value of the previous

half cycle waveform from t, to (to*+T/2). \ Tl :
2tO+T k

=— (f(t)[@osnw_ t [dit
A T{ t) A

Figure 8 — Analysis of waveform

T4 T with half wave symmetry
2 2 b +
A== ff(t)l]:osnwtliﬂH— If(t)m:osnwtmt
T, 4
2
In the second part of the expression, the variable ‘t’ is replaced by the variable ‘t-T/2".

t+/2
3 If(t)l]:osnthjH—I f(t=T/5) osnw, (t-T/4) (- T/)

f(t-T/2) = — 1(t) for half-wave symmetry, and

since woT =2 1T, COS Nwy(t — T/2) = cos (nwt —nm) which has avalue of (-)cos nw,t when
nisodd and has a value of cos nut when niseven.
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From the above it follows that the second term is equal to the first term when n is odd and the
negative of the first term when niseven.

2)(2t0+-V2

Thus A = 4 [ f(t)[osnaw,t 8t whennisodd
tO

and

A,=0 whenniseven

Similarly it can be shown that

and

ox2% 2
Bn :? If(t) [N nwot mt whennisodd
tO

B,=0 whenniseven

Thus it is seen that in the case of half-wave symmetry, even harmonics do not exist and that
for the odd harmonics the coefficients A, and B, can be obtained by taking double the integral
over any half cycle.

It is to be noted that many practical waveforms have half-wave symmetry due to natural

causes.

Summary of Analysis of waveforms with symmetrical properties

1

With even symmetry, B, isO for al n, and A, istwice the integral over half the cycle
from zero time.

With odd symmetry, A, isO for all n, and B, is twice the integral over half the cycle
from zero time.

With half-wave symmetry, A, and B,, are O for even n, and twice the integral over
any half cyclefor odd n.

If half-wave symmetry and either even symmetry or odd symmetry are present,
then A, and B, are O for even n, and four times the integral over the quarter cycle for
odd n for A, or B, respectively and zero for the remaining coefficient.

It is aso to be noted that in any waveform, Ay/2 corresponds to the mean value of the
waveform and that sometimes a symmetrical property may be obtained by subtracting
this value from the waveform.

Piecewise Continuous wavefor ms

Most waveforms occurring in practice are continuous and single valued (i.e. having a single
value at any particular instant). However when sudden changes occur (such as in switching
operations) or in square waveforms, theoretically vertical lines could occur in the waveform
giving multi-values at these instants. As long as these multi-values occur over finite bounds,
the waveform is single-valued and continuous in pieces, or said to be Piecewise continuous.

Figure 9 shows such awaveform. Analysis can be carried out

using the Fourier Series for both continuous or piecewise

continuous waveforms. However in the case of piecewise

continuous waveforms, the value calculated from the Fourier

Series for the waveform at the discontinuities would

correspond to the mean value of the vertical region. However

this isnot apractical problem as practical waveforms will not Figure 9 — Piecewise
have exactly vertical changes but those occurring over very continuous waveform
small intervals of time.
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Frequency Spectrum

The frequency spectrum is the plot showing each of the harmonic amplitudes against
frequency. In the case of periodic waveforms, these occur at distinct points corresponding to
d.c., fundamental and the harmonics. Thus the spectrum obtained is a line spectrum. In
practical waveforms, the higher harmonics have significantly lower amplitudes compared to
the lower harmonics. For smooth waveforms, the higher harmonics will be negligible, but for
waveforms with  finite discontinuities (such as sguare waveform) the harmonics do not

decrease very rapidly. The harmonic magnitudes are taken as /A’ + B? for the n™ harmonic

and has thus a positive value. Each component also has a phase angle which can be
determined.

& a(t)

Example 1

Find the Fourier Series of the piecewise continuous

rectangular waveform shown in figure 10. L

312 12 [t2 |3z

Solution
Period of waveform = 2T Figure 10 — Rectangular waveform
Mean value of waveform=0. [0 A/2=0

Waveform has even symmetry. [0 B, =0for al n

Waveform has half-wave symmetry. [ A, B,=0for evenn

Therefore, A, can be obtained for odd values of n as 4 times the integral over quarter cycle as
follows.

_4x27
=—— J’a(t) [tosnw,t [dt for odd n
4T/2 4 % 4E . nwT _4E . m
= — [E[osnw,t [t = (ESnnw,t| " = ($in =—[dinn— foroddn
T3 nw, T o nhw,T 2 nrt

i.e. A1 =4E/Tt A3 =-4E/3m, As = 4E/5m,A; = -4E/Tm, ...........

4E 0O cos3w,t = cosbw,t cos7w,t 0
O a(t) = — gosw,t — + - +o
B 3 5 7 H

R\ KQX N ﬂ?\@m

A bd W

VSGAY

Figure 11 — Fourier Synthesis of Rectangular Waveform
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Figure 11 shows the synthesis of the waveform using the Fourier components.
waveform shown correspond to the (i) original waveform, (ii) fundamental component only,
(iii) fundamental component + third harmonic, (iv) fundamental component + third harmonic
+ fifth harmonic, and (v) fundamental, third, fifth and seventh harmonics.

You can see that with the addition of each
component, the waveform approaches the
original waveform more closely, however
without an infinite number of components it
will never become exactly equal to the
original.

Amplitude

The

The frequency spectrum of the waveform is 0
shown in figure 12.

Example 2
Find the Fourier series of the waveform shown in figure 13.
Solution

It is seen that the waveform does not have any symmetrical
properties although it is virtually the same waveform that
was therein example 1.

Period = 2T, mean value = E/2
Itisseenthat if E/2 is subtracted from the waveform b(t)

T | T | T |
W 2w, 3w, 4w, 50, 6w, 7w, t

Figure 12 — Line Spectrum
Let us now consider the same rectangular waveform but with a few changes.

2F]

bi(t)

t

513 113 |0
-E

2T/3

5T/3

Figure 13 — Rectangular waveform

It is also seen that the waveform is shifted by T/6 to the right from the position for even

symmetry.
Thus consider the waveform by (t) = b(t —-T/6) — E/2.

This is shown in figure 14 and differs from the waveform
a(t) in figure 10 in magnitude only (1.5 times). Therefore
the analysis of by(t) can be obtained directly from the earlier
analysis.

3E/7

ba(t)

312 T4 g

-3E/7

T/2

~
3T/2

Figure 14 — Modified waveform

cos3w,t = cosdw,t cos7w,t [
- + - +

0 by(t) = 1.5%a(t) = °F %oswot
T

....... E where 2T = 21T

5 7
O b(t) = ba(t +T/6) + E/2, also & T/6 =176
O cos(Bw,t +70)  cos(Bw,t +°T)  cos(7ew,t + T)
:E+Eﬂzos(wot+77)— i A)+ "0 6 oo
2 6 3 5 7
Amplitude

If the problem was worked from  first
principles the series would first have been
obtained as a sum of sine and cosine series
whose resultant would be the above answer.
Figure 15 shows the corresponding line
spectrum.  The only differences from the

earlier one are that the amplitudes are 1.5 times
higher and ad.c. term is present.

Theory of Electricity — Analysis of Non-sinusoidal Waveforms - Part 1 —J R Lucas
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Example 3 y(t)

shown in figure 16.

Find the Fourier Series of the triangular waveform E /

. 2l A T2 T
Solution \/ﬁ
-E

Period of waveform = 2T, w,.2T =21 Figure 16 — Triangular waveform
Mean value of waveform=0. JA,/2=0

Waveform has odd symmetry. OA,=0for al n

Waveform has half-wave symmetry. A, B,=0for evenn

Va V2
4x2 | 2—E[ﬂE<l;|nnwtmt _ [ﬂ £osnw 8E cosna)ot

n2T0T T2 nw

(o]

B

coshw, T (sm nw, 15 -0)
g g, o s
T 2 nw T2 (nw,)?

(o]

4E El:osn”2 8E[&Nn’T
= +

nit (nm)?

2

Substituting values
B, = 8E/T?, B;=—-8E/(3mY, Bs=8E/(5nf, B;= -8E/(7T), ..........

Dy(t)—S—ED _Sin3w,t sm5w0t_sin7a)0t+ O
g 2 52 72 ........... E

Consider the derivative of the origina at)
waveform y(t). Thiswould have the waveform oBIT
shown in figure 17 which corresponds to the — —
same type of rectangular waveform that we t
had in example 1 except that the amplitude is

2/T times higher. Thus by using the integral of SR I
the analysed original waveform we should also -2E/T
be able to obtain the above result for y(t).

Figure 17 — Rectangular waveform
Using earlier solution, we have

7
alt) _24E Dos cosSw0t+0035w0t_cos wt, O
T 7 3 5 7 H
2 _4E [ cos3w,t . cosbw,t cos7w,t l
Oy(t) =Jat)dt= [=E—gosw,t - °—+ 2 - . ot
YO =fal) dt= [0 - gosot-—— - = i
2 AE lBnwt sin3w,t  sinbwt  sin7w,t O
=—-U—n 5 +— E— Fon n
T mQoo, 3w, 5w, 7" w, 0

which when simplified isidentical to the result obtained using the normal method.

Theory of Electricity — Analysis of Non-sinusoidal Waveforms - Part 1 —J R Lucas — October 2001
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Example 4

a(t)
Find the Fourier series of the waveform shown in E
figure 18.
Solution ‘ 3T/4N. T4 ( /4 |3T/A ¢
Period=T, [ ,T=2T | E
Meanvaue=0, OA/2=0 Figure 18 — Periodic waveform

Waveform possesses half-wave symmetry. [0 even harmonics are absent.

47 4% 472 AE
0 A, =—If(t)|]:osna)otmlt=—J’El]:osna)ot Bdt+—f|'(E——[ﬂ)|]:osna)ot [dit
T3 T3 TA T

.
_ %E J5|_nna)otEF1+£m5_4Eﬂ)E§mna)ot
[] o T T

nw,

T Y :
4 4E) Egn now,t it

2

: T B
_ %E sin nw, ; U —Q—E)Eﬁn nw, 16EE( cosNw,t) 5
0 na, D

nw T2 (nw,)?

o

I
4

sincew,T =21, T/4=1/2and WT/2=TT
nrit

sm— (- cosnn+cos—)
nn
0 A = 4ED—2 - 4EGL+1GED 2" (oroddn,
n2mr n2mr (n2m)
Substituting different values of n, we have
A= -2E_0-2E = 1 0a10E
T 7T

A3 =-0.1672E, As=0.1435E, A; =-0.08267E
Similarly, the B, terms for odd n are given as follows.

472 47 472 4E
——J’f(t)Bl;mnthﬂt —_[EE*hnnwth J(E——Eﬂ)&nnwtmt

;
X V5
_ %E £osnth +—EQE— )Eposnwt > EJ 4E Eg:osna)tmIt
T (nw, § T O, 5 T, (-)nw,
D I —
%Eﬁ(l cosnw, ;)4 4 Eposn 162EE( Ysinnw,t [3
O N, D nw, T° () [}
sincew,T =21, T/4=1/2and w,T/2= TT
Q- cos—) (—=sin nn+sm—)
_4EG—2+4EG°°ﬂ+16ED 2 foroddn.
n2mr (n2m)
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Substituting different values of n, we have
B; = 0.4053E, B3 = -0.04503E, Bs = 0.0162E, B; = -0.00827
The amplitudes can now be obtained for each frequency component from A,, and B.

d.c. term = 0, amplitude 1 = +/1.04192 + 0.4053% = 1.1180, amplitude 3 = 0.1731, amplitude 5

= 0.1444, amplitude 7 = 0.08309, .......
Amplitude

I | .

~ L 0 ta Za 3 4 S G T
Figure 19 — Synthesised waveform Figure 20 — Line Spectrum
Figure 19 shows the synthesised waveform (red) and its components up to the 29™ harmonic

(odd harmonics only) along with the original waveform (black). Figure 20 shows the line
spectrum of the waveform of the first 7 harmonics.

Example 5 (t)

Figure 21 shows a waveform obtained from a
power electronic circuit. Determine its Fourier ’\[/ W

Seriesif it is defined as follows for one cycle.
f(t) =100 cos 314.16t for—-0.333<t<25ms

f(t) = 86.6 cos (314.16 t — 0.5236) t (ms)
for25<t<3.0ms -0.333 0 25 30 5.833
Solution Figure 21 — Power electronics waveform

The waveform does not have any symmetrical properties. It hasaperiod of 3.333 ms.
T =0.003333s, wy,=210T = 1885 rad/s

2 0.0025 2 0.003
=— f (t) Leosnew,t Leit + — | f (t) Leosnew,t Leit
-0.000333 T 0.0025
2 0.0025 2 0.003
= — [100[¢0s314.16t [cosnaw,t [dt + — [86.6[£0s(314.16t — 0.5236) Lcosnw,t Lt
-0.000333 0.0025
100 0.0025

=— (cos(314.16t + nw,t) + cos(314.16t — nw,t) Loit

-0.000333

0.003
866 Jcos(314.16t — 0.5236 + naw,t) + cos(314.16t — 0.5236 — new,t) Leit

0.0025

_ 100 [Sn(314.16t + nwo,t) _ sin(314.16t -~ nw,t) o
T H 314.16+nw, 314.16 - nw,

0.000333

, 86.6[5n(314.16t 05236 + nw,t) _ sin(314.16t - 0.5236 - nw, ) o
T H 314.16 + new, 314.16 - nw,

.0025
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100  [1n(314.16t + n1885t) _sin(314.16t - ni88st)

© 0.003333[] 314.16+ 1885 314.16 - 11885  [lyoummss
86.6 in(314.16t — 0.5236 + n1885t) N sin(314.16t — 0.5236 — n1885t)
0.003333] 314.16 + 1885 314.16 — n1885 Dooss
_ 30 x10°FEN(0-7854 +4.712n) _ sin(0.7854 - 4.712n) _ sin(-0.1046 +0.6277n) _ sin(-0.1046 + 0.6277n)
0 314.16 +nl885 314.16 - n1885 314.16 + n1885 314.16-n1885 [
in(0.0422 - 0.5236 +5.655n) , sin(0.9422 - 0.5236 ~5.655n) _ [}
+25.08x10°0] 314.16 + n1885 314.16 - n1885 0
' (sin(0.7854 - 0.5236 + 4.7125n) _ sin(0.7854 - 0.5236 - 4.7125n) I
314.16 + n1885 314.16 - n1885

Substituting values, A1, Az, Az, A4, As, Asg, .... can be determined.

In asimilar manner B, By, B3, B4, Bs, B, .... can be determined.

The Fourier Series of the waveform can then be determined.

The remaining calculations of the problem are left to the reader as an exercise.

Effective Value of a Periodic Waveform

The effective value of a periodic waveform is also defined in terms of power dissipation and
is hence the same asther.m.s. value of the waveform.

1 to+T )
A\affective - ? {[a (t) Coit

Since the periodic waveform may be defined as

a(t) = A +ZA1cosnw t+ZB sinnw,t

Ay \/T tOt_:[)T%?+z,0hcosnw t+§B snnwotgdt

n=1 E

Using the trigonometric properties derived earlier, only the square terms will give non-zero
integrals. The Product termswill all give zero integrals.

~ 1 °°A12 anZ
-\/?%Aign+zph E—I—+ZB E—l—D JB—S+Z 5

o+ U
\/1t ' %—g + Z (A, cosnw t)? + 3 (B, sinnw,t)’ + S product terms{et

n=1 2 n=1

(A, +B;)
2

Thus the effective value or r.m.s. value of a periodic waveform is the square root of the sum
of the squares of the r.m.s. components.

A

> isthed.c. term, and " ——"2 isther.m.s. value of the n' " harmonic.
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Calculation of Power and Power Factor associated with Periodic Waveforms
Consider the voltage waveform and the current waveform to be available as Fourier Series of
the same fundamental frequency wy, as follows.

V(D) = Vec + TV, sin(nwt+a,) and i(t)= Vee+ 3 1, sin(net + B,)

n=1 n=1
p(t) = v(t).i(t)  and, average power P isgiven by
1 to+T 1 to+
P :— J’v(t)l(t) dt :— ﬂvdc +5V, sn(hwt+a, )] [[]Idc +1,sin(nwt+ B, )] dt

Using the trigonometric properties, it can be easily seen that only similar terms from v and |
can give rise to non-zero integrals.

Thus P = Vgelge + Z(l/Z)Vn I COS(an - Bn) = Vyelge + ZVrms,n Irms,n COS(an- ﬁn)

Thus the total power is given as the sum of the powers of the individual harmonics including
the fundamental and the direct term.

Example 6

Determine the effective values of the voltage and the current, the total power consumed, the
overall power factor and the fundamental displacement factor, if the Fourier series of the
voltage and current are given as follows.

v(t) = 5+ 8sin(wt + 16) + 2 sin3wt volt
i(t) =3+ 5sn(wt+ mM2)+ 1sin(2wt - 173) + 1.414 cos(3wt + 174) ampere
Solution

_\/52+B—g B—g = 7.681V

W20 V2O
-\/32+§\/__§ E\/__g Eﬂg = 479 A

P =5x3+ (8/v2).(5/v2).cos(r73) + 0 + (2/v2).(1.414/v2).cos(1i2+ 114)
=15+ 10-1=24W

The overall power factor of a periodic waveform is defined as the ratio of the active power to
the apparent power. Thus

Overall power factor = 24/(7.681 x 4.796) = 0.651

In the case of non-sinusoidal waveforms, the power factor is not associated with lead or lag
as these no longer have any meaning.

The fundamental displacement factor corresponds to power factor of the fundamental. It
tells us by how much the fundamental component of current is displaced from the
fundamental component of voltage, and hence is also associated with the terms lead and lag.

Fundamental displacement factor (FDF) = cos ¢ = cos (172 - 176) = cos 1¢3 = 0.5 lead
Note that the term lead is used as the original current is leading the voltage by an angle 173.
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Analysis of Circuitsin the presence of Harmonicsin the Source

Due to the presence of non-linear devices in the system, voltages and currents get distorted
from the sinusoidal. Thus it becomes necessary to anayse circuits in the presence of
distortion in the source. This can be done by using the Fourier Series of the supply voltage
and the principle of superposition.

For each frequency component, the circuit is analysed as for pure sinusoidal quantities using
normal complex number analysis, and the results are summed up to give the resultant
waveform.

Example 7

r=10Q

Determine the voltage across the load R for the
supply voltage e(t) applied to the circuit shown

infigure 22. &) R=100Q
e(t) = 100 + 30 sin(300t + 176) + 20 sin 900t +
15 sin (1500t - 176) + 10 sin 2100t Figure 22 — Circuit with distorted source
Solution
For the d.c. term,
Ve o 10 1y —g001v
100 100+10°

For any a.c. term, if Vo isthe peak value of the ™ harmonic of the output voltage, then

A_ CIR %1+ jawCR) _ R

m L+r+C//R L+r+ R+(jwL+r)1+ jwCR
/2 jwL+r %1+]0)CR) (] YA+ ] )

- 100
"™ ~100 + (j300n x 0.050 + 10)(1+ j300n x100x10™° x100)

Vnm = Enm D H 100 H
100+ (j15n +10)(1+ j3n)

100
nm D 2 .
110-45n° + j45n

nm ~

V,,=E

nm

for the fundamental
= 30x100/(65+j45) = 3000/79.06[734.7°=37.95[7 -34.7°
= 20x100/(-295+j135) = 2000/324.42(7155.4°=6.16(7 -155.4°
Vsm= 15x100/(-1015+j225) = 1500/1039.64//167.5°=1.44(] -167.5°
V7m= 10x100/(-2095+j315) = 1000/2118.5/7171.4°=0.47(] -171.4°

v(t) = 90.91 + 37.95 sin(300t + 30° — 34.7) + 6.16 sin (900t — 155.4°) +1.44 sin (1500t -
30° - 167.8) + 0.47 sin (2100t — 171.4°)

v(t) = 90.91 + 37.95 sin(300t —4.7°) + 6.16 sin (900t —155.4°) + 1.44 sin(1500t —197.5)
+ 0.47 sin (2100t —171.4°)
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Complex form of the Fourier Series

It would have been noted that the only frequency terms that were considered were positive
frequency terms going up to infinity but that time was not limited to positive values.
Mathematically speaking, frequency can have negative vaues, but as will be obvious,
negative frequency terms would have a positive frequency term giving the same Fourier
component. In the complex form, negative frequency terms are a so defined.

Using the trigonometric expressions
e®=cosf+jsinB® and €®=cosO+jsin®
we may rewrite the Fourier seriesin the following manner.

f(t)= A +Z(A1cosna) t+B,sinnw,t)

Ab o inaot + e—jnwot jnowgt e—jnwot
ft)=—+ B
® 2 zl A 2 " 2]

This can be re-written in the following form
-j0 2 A~ |B . Eﬁ +jB
f(t):pszo_i_z ejnwot Ah 2] nH_I_eanot 2] nEl
n=1 D D D E

It is to be noted that B, is always 0, so that the jO with A, may be written asjB,. Also €°=

Thus defining C, :w’weha"e c,=h . 0 g g =As —ZJB_n

the term on the right hand side outside the summation can be written as C, e 19 and the first
term inside the summation becomes C,e!"%".

t,+T to+T

Since A, :$ If(t) [dosnaw,t Ldt = A, :$ If(t) [¢os (—na,t) [dit = A
t, i,

2 t,+T ] 2 to+T ]
and B, :? If(t)@n nw,tldit B_, :? jf(t)&n (—naw,t) Ldit = B,
ty t
A—n - jB—n —_ A1 + JBH
2 2
That is, the second term inside the summation becomes C., & "%!,

oc., =

Thus the three sets of terms in the equation correspond to the zero term, the positive terms and
the negative terms of frequency.

Therefore the Fourier Series may be written in complex form as
ft)=SC, "
n=—oco

and the Fourier coefficient C,, can be calculated as follows.

t,+T 1tO+T )
C, = _ZJB = ngf(t)[ﬂcosnwt—annwt]mt —J f (t) @™ [ait
tO
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