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Three Phase Theory - Professor J R Lucas 

As you are aware, to transmit power with single phase alternating current, we need two 
wires (live wire and neutral).  However you would have seen that distribution lines 
usually have only 4 wires.  This is because distribution is done using three phase and the 
4th wire is the neutral. How does this help ?  Since the three phases are usually 120o out 
of phase, their phasor addition will be zero if the supply is balanced. 

 

 

 

 

 

It is seen from figure 1(a) that in the balanced system shown, the three phases, usually 
designated R, Y, B corresponding to Red, Yellow and Blue, are equal in magnitude and 
differ in phase angle by 1200.  The corresponding phasor diagram is shown in figure 1(b). 

The voltage between any of the phases and the neutral is called the phase-to-neutral 
voltage or phase voltage Vp. 

It is usual to call the voltage between any two lines as the  line-to-line voltage or line 
voltage VL. 

If the R-phase voltage is VR = Vp∠ 0, then the remaining phase voltages would be VY = 
Vp∠ -2π/3  and  VB = Vp∠ -4π/3.    

 

Balanced Supply 

A balanced three phase supply can be connected either in star as in figure 2 (a) or in delta 
as in figure 2 (b). 

 

 

 

 

 

Figure 1(a) – Three phase waveforms 
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Figure 2(a) Star-connected supply 
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In a balanced three phase system, knowledge of  one of the phases gives the other two 
phases directly.  However this is not the case for an unbalanced supply. 

In a star connected supply, it can be seen that the line current (current in the line) is equal 
to the phase current (current in a phase).  However, the line voltage is not equal to the  
phase voltage. 

The line voltages are defined as VRY = VR – VY, VYB = VY – VB,  and VBR = VB – VR.   

 

 

 

 

 

 

 

Figure 3(a) shows how the line voltage may be obtained using the normal parallelogram 
addition. It can also be seen that triangular addition also gives the same result faster. 

For a balanced system,  the angles between the phases is 120o and the magnitudes are all 
equal.  Thus the line voltages would be 300 leading the nearest phase voltage.  
Calculation will easily show that the magnitude of the line voltage is √3 times the phase 
voltage. 

                          IL = IP  ,                      VL  = √3 VP  ,          IL  = √3 Id  

Similarly in the case of a delta connected supply, the current in the line is √3 times the 
current in the delta. 

It is important to note that the three line voltages in a balanced three phase supply is 
also1200 out of phase, and for this purpose, the line voltages must be specified  in a 
sequential manner.  i.e.  VRY, VYB and VBR.  [Note: VBY is 1800 out of phase with VYB so 
that the corresponding angles if this is chosen may appear to be 600 rather than 1200].  

Thus if the direction of VR is selected as reference, then 

VR = Vp∠ 0,     VY = Vp∠ -2π/3     and      VB = Vp∠ -4π/3 

and VRY = √3Vp∠π /6,     VYB = √3Vp∠ -π/2     and      VBR = √3Vp∠ -7π/6 
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Figure 3(b) Triangular addition Figure 3(a) Parallelogram addition 
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Balanced Load 

A balanced load would have the impedances of the three phase equal in magnitude and in 
phase.  Although the three phases would have the phase angles differing by 1200 in a 
balanced supply, the current in each phase would also have phase angles differing by 
1200 with balanced currents.  Thus if the current is lagging (or leading) the corresponding  
voltage by a particular angle in one phase, then it would lag (or lead) by the same angle 
in the other two phases as well (Figure 4(a)). 

 

 

 

 

 

 

The balanced load can take one of two configurations – star connection, or delta 
connection.  For the same load, star connected impedance and the delta connected 
impedance will not have the same value.  However in both cases, each of the three phase 
will have the same impedance as shown in figures 4(b) and 4 (c). 

It can be shown, for a balanced load (using the star delta transformation or otherwise), 
that the equivalent delta connected impedance is 3 times that of the star connected 
impedance.  The phase angle of the impedance is the same in both cases. 

 ZD = 3 Zs.  

Note: This can also be remembered in this manner. In the delta, the voltage is √3 times 
larger and the current √3 times smaller, giving the impedance 3 times larger.  It is also 
seen that the equivalent power is unaffected by this transformation. 

Three Phase Power 

In the case of single phase, we learnt that the active power is given by 

 P  =  V I cos φ 

In the case of three phase, obviously this must apply for each of the three phases.  Thus 

 P = 3 Vp Ip cos φ 

However, in the case of three phase, the neutral may not always be available for us to 
measure the phase voltage.  Also in the case of a delta, the phase  current would actually 
be the current inside the delta which may also not be directly available. 
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Figure 4(a) Phasor Diagram Figure 4(b) Star connection Figure 4(c) Delta connection 
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It is usual practice to express the power associated with three phase in terms of the line 
quantities.  Thus we will first consider the star connected load and the  delta connected 
load independently. 

For a balanced star connected load with line voltage VL and line current IL, 

Vstar = VL /√3,    Istar = IL 

Zstar = Vstar / Istar = VL /√3IL 

Sstar = 3VstarIstar
* = √3VLIL

*  

Thus Pstar = √3VLIL cos φ,      Qstar = √3VLIL sin φ   

For a balanced delta connected load with line voltage Vline and line current Iline 

Vdelta = VL,     Idelta = IL /√3 

Zdelta = Vdelta / Idelta = √3VL / IL 

Sdelta = 3VdeltaIdelta = √3VLIL  

Thus Pstar = √3VLIL cos φ,      Qstar = √3VLIL sin φ   

It is worth noting here, that although the currents and voltages inside the star connected 
load and the delta connected loads are different, the expressions for apparent power, 
active power and reactive power are the same for both types of loads when expressed in 
terms of the line quantities. 

Thus for a three phase system (in fact we do not even have to know whether it is a load or 
not, or whether it is star-connected or delta-connected) 

 Apparent Power   S = √3VLIL 

 Active Power  P = √3VLIL cos φ 

 Reactive Power Q = √3VLIL sin φ 

Analysis of three phase balanced systems 

Since we know that the  three phases are balanced and that the voltages (and currents) are 
related to each other by 1200, we do not have to do calculations for each of the three 
phases unnecessarily. We could  calculate for just one phase (usually the A phase in a 
system with phase sequence A-B-C).  There are two common methods of doing this. 

 

 

 

 

 

 

 

 
Figure 5 – Three phase system 
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(a) Single circuit of a three phase system 

Consider the 3 phase 3 wire system shown in figure 5 (with the neutral wire absent). 

For a balanced system, the supply voltages ER, EY and EB will be 1200 out of phase. 

Using Millmann’s theorem (or otherwise), it can be easily seen that the potential of the 
star point S of the load is equal to the potential of the neutral N of the supply.  Thus 
whether a neutral wire is present or not  in the  system, the analysis of the system can be 
identical. Thus we will draw a neutral wire between S and N of zero impedance and do 
our analysis in that manner. 

Once the neutral wire is in place, and there is no potential difference between S and N, 
we could analyse only one single phase of the system, namely the “A” phase.  This may 
be redrawn as in figure 6. 

  

 

 

 

 

 

In this case, the supply voltage Ep is a phase voltage, the supply current is the phase 
current Ip, the load voltage Vp is a phase voltage and the power Pp is the power is  one 
phase. 

If we compare with the line quantities, we have 

 EL = √3 Ep,         IL = Ιp     and    Pp  = P/3 

Usually, we are more interested in knowing the voltage and the power from practical 
considerations, rather than the current. [For example, if I ask you the voltage and power 
rating of a bulb in your home, you would know it.  However if I asked you for the current 
taken by the bulb, you would normally not be aware of the value but would probably 
obtain it from the wattage and the voltage.  The same is true in a large power system]. 

Thus we would like to reformulate the problem so as to give the voltage and the power at 
the desired values, even at the  expense of a wrong current.    

(b) Equivalent circuit for three phase balanced system 
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Figure 6 – One phase of Three phase system 
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Consider multiplying the source voltage Ep in figure 6 by √3.  This would increase both 
the line current Ip and the load voltage Vp by a factor of  √3. 

Since both the  load voltage and the load current has increased by √3 times, the load 
power would increase √3×√3 or 3 times. 

Thus we see that such a  circuit (figure 7) would have all  voltages corresponding to the 
line voltages, and all powers corresponding to the total three phase powers as desired.  
The only quantity that would be in error is the line current which would appear as a 
current  √3 times too high.   

This circuit is known  as the equivalent single phase diagram and gives the voltage and 
power as for the three phase system but with the current being in error by √3 times. 

Let us consider an example to illustrate the use of the circuits. 

Example 

A three phase 400V, 50 Hz, balanced supply feeds a balanced load consisting of (a) three 
equal single phase loads of (40 + j 30) Ω connected in star, and (b) a three phase heating 
load (purely resistive) of 1.8 kW. 

Determine the supply current, supply power factor, active and reactive power supplied 
and the value of the capacitances that must  be connected in delta to improve the overall 
power factor to 0.95 lag. Obtain the result using (i) one phase of the three phase system, 
and (ii) the equivalent single phase circuit. 

Solution 

(i) Using one-phase diagram (figure 8) 

  ZL1 = 40 + j 30 Ω 

 Ep  =  400/√3  = 230.9∠ 0 

 Pp  =  1.8/3  = 0.6 kW  = 600 W 

∴ 0

01 87.36619.4
87.3650

09.230

3040

09.230 −∠=
∠

∠=
+

∠=
j

I p  

[Note:  Quite often,  we take the phase voltage of the  three phase  400 V system to be 
230 V rather than the calculated value of 230.9 V.  You would then of course get a 
slightly different answer.] 

In order to calculate Ip2, we need not calculate ZL2, but can use P = V I cos φ. 

∴ 0598.2
19.230

600
2 ∠=

×
=pI   [Note: angle is zero because it is purely resistive] 

Thus  Ip = Ip1 + Ip2  =  4.619∠ -36.870 + 2.598 = 6.293 – j 2.771 =  6.876∠ -23.770 A 

∴   supply current  =  6.876∠ -23.770 A 

 supply power factor  =  cos (0 – (-23.77)) = 0.915 lag 

 active power supplied = √3VLIL cos φ  = √3 × 400 × 6.876 × 0.915 =  4360 W 

  reactive power supplied = √3VLIL sin φ  = √3 × 400 × 6.876 × sin (-23.77) = 1920 var 
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Ip 

Figure 8 – Single phase diagram 
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The capacitances are connected to improve the power factor. 

Why do we want to improve the power factor ? This is because of the  power factor is 
low and to transfer the same amount of active power we need a greater amount of current 
which in term means a much greater amount of power losses in the system, since power 
loss is proportional to the square of the current. 

Why do we  use capacitors to correct the power factor ?  This is because most normal 
loads have an inductive component (for example, a  fan has a winding and a fluorescent 
lamp has a choke, both of which are basically inductors).   We can compensate for the  
reactive power of an  inductive reactance by the reactive power of  a capacitive reactance. 

In this particular example, we are required to improve the power factor to 0.95.  Why to 
0.95 ?  Why not to 1.0, which would give the lowest power factor ? This is because 
improvement of power factor means additional capacitance.  We try to use only so much 
capacitance as would give us a financial benefit.  When we improve the power factor 
angle from –36.87o (corresponding to power factor = 0.8 lag) to –18.19o (corresponding 
to a power factor of 0.95) we get an  improvement of (0.95 – 0.8 = 0.15 or 0.15/0.8 = 
18.75%).  Whereas when we improve a similar amount of angle from –18.19o to 0o, we 
get an improvement of only (1.0 – 0.95 = 0.05 or 0.05/0.95 = 5.3%).  In fact if we 
improved  a  similar  amount  from  –53.13o (corresponding to a power factor of  0.6) to  
–36.87o we get an even larger improvement (0.8 – 0.6  = 0.2 or 0.2/0.6 = 33.3%).  Thus 
we can see that as we come closer and closer to unity power factor, the benefits rapidly 
decrease.  Thus in industry it is usual to improve  the power factor to a value slightly less 
than  unity power factor, and this value can be theoretically calculated using such 
information as the cost of capacitors,  the electricity tariff etc. 

Let us get back to doing the calculations.  When the power factor is improved to 0.95 lag, 
using a pure capacitance, then the amount of active power does not change but remains 
the same as before.  i.e. P = 4.360 kW.  However, the reactive power will decrease such 
that the overall power factor is 0.95. 

[0.95 is obviously power factor lag, as to correct to 
0.95 power factor lead would be even more costly 
than to improve to unity power factor and hence 
would absolutely have no advantage]     

Figure 9 shows the diagram showing the active and 
reactive power during power factor correction. 

The capacitance must add the difference between original amount of reactive power 
supplied and the new amount of reactive power supplied. 

 Q = 1.920 k var 

with the new power factor, Qnew is calculated from 

433.119.18tan360.4tan 0 === newnew PQ φ  k var 

∴ Qcap = 1.920 – 1.433 = 0.487 k var 

each of the 3 capacitors would provide one-third this reactive power. 

∴  Capacitance  required = 0.487/3 = 0.162 k var  = V2 C ω 

P 

Q 

Qnew 

Qcap 

Figure 9 – Power factor correction 
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If the capacitors are connected in delta,  then the line voltage would appear across each. 

∴ 162 = 4002 C 100 π 

∴ C = 3.230 µF each connected in delta 

If the capacitors are connected in star,  then the phase voltage would appear across each. 

∴ 162 = 230.92 C 100 π 

∴ C = 9.689 µF each connected in star 
 

(ii) Using equivalent single-phase diagram (figure 9) 

  ZL1 = 40 + j 30 Ω 

 EL  =  400∠ 0 

 P  =  1.8 kW  = 1800 W 

∴ 0

011 87.368
87.3650

0400

3040

0400
3 −∠=

∠
∠=

+
∠==
j

II L  

In order to calculate I2, we can use P = √3 VL IL2 cos φ = VL I2 cos φ. 

∴ 05.4
1400

1800
2 ∠=

×
=I   [Note: angle is zero because it is purely resistive] 

Thus √3IL = I = I1 + I2  =  8∠ -36.870 + 4.5 = 10.9 – j 4.8 =  11.910∠ -23.770 A 

∴   supply current = 11.910∠ -23.770 /√3 =  6.876∠ -23.770 A 

which is the same as in the earlier method.  Remaining calculations will be similar. 
 

Unbalanced three phase systems 

An unbalanced three phase system is one which is not perfectly balanced.   It may be 
caused by the supply being unbalanced, or more usually the load  being unbalanced or 
both. In such a case, knowledge of the currents or voltages  in one phase does not tell us 
the currents or voltages  in the other phases.  Thus all phase quantities must be 
independently determined.  Let us consider some of the  common unbalanced situations 
to see how this may be done. 

(a) Star connected supply feeding a star connected load  

 

 

 

 

 

 

 

 

Figure 9 – Equivalent diagram 
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Figure 10 – Unbalanced Three phase system 
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(i) If  Zneutral is considered zero, each individual phase current can be independently 
determined from the supply voltage in that phase and the impedance of  that phase. 

 ILR = 
LRlines

R

Zzz

E

++ ,  ILY = 
LYlines

Y

Zzz

E

++ ,  ILB = 
LBlines Zzz

EB

++   

Then the load voltages etc can be determined.  

(ii)  If there is a neutral impedance, then using Millmann’s theorem, we  will first have to 
determine the voltage of the star point of the load with respect  to the supply neutral. 
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from which VSN is known. 

Thus the load currents can be determined from  

ILR = 
LRlines

SNR

Zzz

VE

++
−

,  ILY = 
LYlines

SNY

Zzz

VE

++
−

,  ILB = 
LBlines

SNB

Zzz

VE

++
−

   

Hence the remaining quantities can be determined. 

(iii) If the system is a 3-wire system, rather than a 4-wire system, the analysis is the 
same as if zneutral were ∞  (i.e. 1/zneutral = 0).  Thus again Millmann’s theorem is used to 
determine VSN and the load currents are then determined. 

 
(b) Delta connected supply feeding a star connected load 

If the supply was connected, not in star but  in delta (figure 11), which is not the case in 
practice, then we would have to write  the Kirchoff’s current law  for the loops and solve 
as a normal circuit problem. 
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Figure 11 – Delta supply feeding  star load 
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(c) Delta connected supply feeding a delta connected load 

 

 

 

 

 

 

 

 

 

When a delta  connected supply feeds a delta connected load (figure 12), which is not 
usual, then the line voltages are known so that the currents inside the delta can be 
obtained directly from Ohm’s Law.  The line currents can then be obtained by phasor 
summing of the currents inside the delta.  The remaining variables are then obtained 
directly. 

(d) Star connected supply feeding a delta connected load 

 

 

 

 

 

 

 

 

 

When a star connected supply feeds a delta connected load (figure 13), then  from the 
phase voltages the the line voltages are known so that the currents inside the delta can be 
obtained directly from Ohm’s Law.  The line currents can then be obtained by phasor 
summing of the currents inside the delta.  The remaining variables are then obtained 
directly. 

Thus basically, any unbalanced system can be calculated using  the basic network 
theorems. 
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Figure 12 - Delta connected supply feeding a delta connected load 
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Symmetrical Components (or Sequence Components) 

Phase Sequence 

A three phase system of voltages (or currents) has a sequence (or  order) in which the 
phases reach a particular position (for example peak value).  This is the natural sequence 
of the supply. According to usual notation, we would call the sequence R-Y-B  or A-B-C. 

If we consider a balanced system of voltages (or currents) they will have only the natural 
sequence, and there will no other components present.  However, Fortescue has 
formulated that any unbalanced system can be split up into a series of balanced systems. 

[This is like saying that any force can be broken up into its components along the x-axis, 
y-axis and z-axis.  The advantage of such a decomposition is in the analysis of more than 
one quantity] 

In the case of unbalanced three phase system, such as shown in figure 14, the unbalanced 
system can be split up into 3 components:  (i) a balanced system having the same phase 
sequence as the unbalanced system, (ii) a balanced system having the opposite phase 
sequence to the unbalanced system (rotation of phasors is always anticlockwise whether 
they are in the same sequence or opposite, so that it is the order of the phases that 
changes, and not the direction of rotation), and (iii) a balanced system of inphase 
quantities. 

 
In any three phase system, the phase quantities R, Y and B  (or A, B and C) may be 
expressed as the phasor sum of: 

- a set of balanced positive phase sequence quantities A1, B1 and C1   

  (phase sequence a-b-c : same phase sequence as original 
unbalanced quantities), 

- a set of balanced negative phase sequence currents A2, B2 and C2  

  (phase sequence a-c-b: opposite phase sequence to original 
unbalanced quantities), 

- a set of identical zero phase sequence currents A0, B0 and C0  

  (inphase, no phase sequence).  

≡ 

Positive 
Sequence 

Negative 
Sequence 

Zero 
Sequence 

R 

Y 

B Figure 14 – Decomposition of unbalanced three phase  
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Figure 15 - Regrouping 
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It is to be noted that the original unbalanced system effectively has 3 complex unknown 
quantities A, B and C (magnitude and phase angle of each is independent). 

It is also to be noted that each of the balanced components have only one independent 
complex unknown each, as the others can be written by symmetry.  Thus the three sets of 
symmetrical components also have effectively 3 complex unknown quantities.  These are 
usually selected as the components of the first phase A (i.e. A0, A1 and A2) . One of the 
other phases could have been selected as well, but all 3 components should be selected  
for the same phase. 

A can be obtained by the phasor addition of A0, A1 and A2.  Similarly  B and C.  Thus 

 A = A0  +  A1   +  A2 

 B = B0  +   B1  +   B2 

 C = C0  +  C1   +  C2 

If the balanced components  are considered, we see that the most frequently occurring 
angle is 1200. 

In complex number theory, we defined  j  as the complex operator which is equal to √-1 
and a magnitude of unity, and more importantly, when operated on any complex number 
rotates  it anti-clockwise by an angle of 900.   

i.e.  j  = √-1  = 1 ∠ 900 

In like manner, we can define a new complex operator α  which has a magnitude of unity 
and when operated on any complex number rotates it anti-clockwise by an angle of 1200.   

i.e. α  =  1 ∠ 1200  =  - 0.500 + j 0.866 

Let us again examine the sequence components of the unbalanced quantity. 

≡ 

A 

B 
C 

A1 

B1 C1 

A2 

Y2 

C2 A0=B0=C0 

=α2A1 =αA1 

=α2B2 

=αA2 

 

We can express all the sequence components in terms of the quantities for A phase using 
the properties of rotation of 00, 1200 or 2400.  Thus 

 A = A0  +    A1     +     A2 

 B = A0  + α2 A1   +  α A2 

 C = A0  +  α A1   +  α2 A2 

This can be written in matrix form. 

Figure 16 – Decomposition of unbalanced three phase  
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This gives the basic symmetrical component matrix equation, which shows the 
relationship between the phase component vector Ph  and the symmetrical component 
vector  Sy  using the symmetrical component matrix [Λ]. Both the phase component 
vector Ph  and the symmetrical component vector  Sy  can be either  voltages or currents, 
but in a particular equation, they must of course all be of the same type. 

Since the matrix is a [3×3] matrix, it is possible to invert it and express  Sy  in terms of   
Ph.  But to do this, it would be convenient to first express some properties of  α. 

Some Properties of α  

 α  =  1∠ 2π/3  or  1∠ 1200 

 α2  =  1∠ 4π/3  or  1∠ 2400  or  1∠ -1200 

  α3  =  1∠ 2π     or  1∠ 3600   or  1 

i.e. α3 - 1 = ( α - 1)( α2 + α + 1)  =  0 

Since α is complex, it cannot be equal to 1, so that α - 1 cannot be zero. 

∴   α2 + α + 1  = 0 

This also has the physical meaning that the three sides of an 
equilateral triangles must close. 

Also  α−1  =  α2  and    α− 2  =  α 

Now  let us look at inverting the symmetrical component matrix. 

Inverse of Symmetrical component matrix 
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Figure 17 Phasor Addition 
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 [Λ]-1  =  


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and the discriminent ∆ = 3(α - α2) = 3α (1-α) 

Substituting, the matrix equation simplifies to give 

[Λ]-1  =  

















+−
+−

)1(1

1)1(
3

1

αα
αα

ααα

α
 

Since α−1  =  α2,   α− 2  =  α  and  1 + α + α2  =  0,  the matrix equation further simplifies to 

[Λ]-1  =  
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

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It is seen  that α  is the complex conjugate of α2,  and  α2  is the complex conjugate of α. 

Thus the above matrix [∆]-1  is one-third of the complex conjugate of [∆]. 

i.e. [Λ]-1  = 3
1 [Λ]* 

This can now be written in the expanded form as 

[ ] PhSy
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Example1 

Find the symmetrical components of the unbalanced system of  the following voltages 
1∠ 00 V, √3∠ -1200 V and 2∠ 900 V. 

Solution 

Writing the matrix equation 
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∠
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R
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V
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Expanding the  equation gives 

VR0 = 3
1 [1∠ 00 +√3∠ -1200 + 2∠ 900]  = 3

1 [1 - √3/2 – j3/2 + j2] = 3
1 [0.134 + j 0.5] 

 = 0.045 + j 0.167 = 0.173∠ 75.00 V 

VB= 2V 

VR= 1V 

VY= √3V 

60o 

Figure 18 Unbalanced Phasors 



Three Phase Theory & Symmetrical Components – Professor J R Lucas  November 2001 

VR1 = 3
1 [1∠ 00 +1∠ 1200×√3∠ -1200 + 1∠ 2400×2∠ 900]  = 3

1 [1 + √3 +√3 – j1]  

= 3
1 [4.464 – j1] = 1.488 – j0.333 = 1.525∠ -12.60 V 

VR2 = 3
1 [1∠ 00 +1∠ 2400×√3∠ -1200 + 1∠ 1200×2∠ 900]  = 3

1 [1 - √3/2 + j3/2 -√3 – j1]  

= 3
1 [-1.598 + j0.5] = -0.533 + j0.167 = 0.558∠ 162.60 V 

Graphical Method  of Solution 

The method of determining the sequence components from the phase components and the 
phase components from the sequence components are similar except that the correct 
equation must be used. 

The solution of the equations may also be done graphically.  The advantage of a graphical 
solution is that it gives an insight to the components very quickly without the need of a 
rigorous analysis.  In the graphical analysis, in addition to phasor addition, multiplication 
by α or α2 would correspond to an anticlockwise rotation of 1200 or 2400 respectively. 

This  can be best understood by an example. 

Example 2 

For the unbalanced set of phasors shown in figure 19, 
verify graphically the sequence components obtained in 
example 1. 

Solution 
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

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VR0 =  [ ]BYR VVV ++3
1  

or 3VR0 =  [ ]BYR VVV ++  

It is more common to plot 3VR0 rather than VR0 and to 
obtain one-third the result.  This is shown in figure 20. It 
can be seen that the resultant has a magnitude of about 
half  that of VR (say 0.5) and an angle of slightly greater 
than that of the VY (say 750).  This corresponds to 3 VR0. 

If we compare the result with that of the analytical 
method in example 1, we see that the value for 3 VR0 
should  be 3×0.173∠ 75.00 V agreeing with the 
observation. 

Similarly, VR1 =  [ ]BYR VVV 2

3
1 αα ++  

VB= 2V 

VR= 1V 

VY= √3V 

  60o 

Figure 19 Unbalanced Phasors 

Figure 20  
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or   3VR1 =  [ ]BYR VVV 2αα ++  

The phasor addition is shown in figure 
21. It can be seen that the resultant has 
a magnitude of slightly greater than one 
and half times  that of VR & Vy (say 
4.2) together and an angle close to 150 
below the horizontal axis.  This 
corresponds to 3 VR1. 

If we compare the result with that of the 
analytical method in example 1, we see 
that the value for 3VR1 should  be 
3×1.525∠ -12.60 V roughly agreeing 
with the observation.  

[An accurate result could have been obtained if actual measurements had been done ]. 

Similarly the negative  sequence can be obtained as follows. 

 VR1 =  [ ]BYR VVV αα ++ 2

3
1  

or   3VR1 =  [ ]BYR VVV αα ++ 2
 

This phasor addition is shown in figure 
22. It can be seen that the resultant has 
a magnitude of slightly less than that of 
Vy (say 1.7) together and an angle close 
to 150 above the negative horizontal 
axis.  This corresponds to 3 VR2. 

If we compare the result with that of the 
analytical method in example 1, we see 
that the value for 3VR2 should  be 
3×0.558∠ 162.60 V roughly agreeing 
with the observation. 

Summary 

 Vp = [Λ] Vs , Ip = [Λ] Is 

 Vs = ��Λ]* Vp , Is = ��Λ]*  Ip 
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Sequence Impedances 

Let us now consider how the impedance appears in sequence components.   

To do this we must first look at the impedance matrix in phase components which we 
know. 

 Vp  =   [Zp].Ip 

Substituting for Vp and Ip in terms of the  symmetrical components we have 

 [Λ] Vs = [Zp]. [Λ] Is 

pre-multiplying equation by [Λ]-1 we have 

 Vs = [Λ]-1.[Zp]. [Λ] Is 

This gives the relationship between the symmetrical component voltage Vs and the 
symmetrical component current Is, and hence defines the symmetrical component 
impedance matrix or Sequence Impedance matrix. 

Thus [Zs] = [Λ]-1.[Zp]. [Λ] = 3
1  [Λ]*.[Zp]. [Λ] 

In a similar manner, we could express the phase component impedance matrix in terms of 
the symmetrical  component impedance matrix as follows. 

 [Zp] = [Λ].[Zs]. [Λ]-1 = 3
1  [Λ].[Zs]. [Λ]* 

The form of the sequence impedance matrix  for practical problems gives one of the main 
reasons for use of  symmetrical components in practical power system analysis. 

If we consider the simple arrangement of a 3 phase transmission line (figure 23), we 
would have the equivalent circuit as 

 

 

 

 

 

 

 

If we think of an actual line such as  from Victoria to Kotmale, we would realise that all 3 
phase wires would have approximately the same length (other than due to differences in 
sagging) and hence we can assume the self impedance components to be equal for each 
phase.  

i.e.  Ra = Rb = Rc  and   La = Lb = Lc 

When a current passes in one phase conductor, there would be induced voltages in the 
other two phase  conductors.  In practice all three phase conductors behave similarly, so 
that we could consider the mutual coupling between phases also to be equal. 

Ra La 

Rb Lb 

Rc Lc 

Mab 

Mbc 

Mca 

Figure 23 – 3 phase transmission line 
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i.e. Mab = Mbc = Mca 

In such a practical situation as above, the phase component impedance matrix would be 
fully  symmetrical, and we could express them using a self impedance term zs and a 
mutual impedance term zm. 

Thus we may write the phase component impedance matrix as 

[ ]
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We may now write the symmetrical component impedance matrix as 
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This can be simplified using the property 1+α+α2 =  0 as follows 
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We see an important result here.  While the phase component impedance matrix was a 
full matrix, although it had completely symmetry, the sequence component impedance 
matrix is diagonal.  The advantage of a diagonal matrix is that it allows decoupling for 
ease of analysis. 

To understand the importance of decoupling (or a diagonal matrix), let us look at the 
following simple algebraic problem. 

 5 x + 3 y + 3 z = 6 

 3 x + 5 y + 3 z = 4 

 3 x + 3 y + 5 z = -10 
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You can see that there is a lot of symmetry in the problem, if formulated as a matrix 
equation. 
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However, I am almost sure you  would not be able to give the solution x = 3, y = 2, z = -5  
of this equation mentally. 

However if I give you the following set of equations 

 4 x + 0 y + 0 z = 12 

 0 x + 5 y + 0 z = 10 

 0 x + 0 y + 3 z = -15 

which corresponds to a diagonal matrix, I am sure all of you would have been able  to get 
the correct solution mentally and in a flash.  This is because the solution of x  requires 
only the first equation, that of y requires only the second equation and that of  z only the 
third equation.  

Power associated with Sequence Components 

With phase components, power in a single phase is expressed as 

 Pphase = V I cos φ 

Thus in three phase, we may either write P = √3 VL IL cos φ  = 3 Vp Ip cos φ for a 
balanced three phase system.  However, with an unbalanced system this is not possible 
and we would have to write the power as the addition of the powers in the three phases. 

Thus  Apparent Complex Power   S  = Va Ia
*  +  Vb Ib

*  +  Vc Ic
*  

The active power P is obtained as the Real part of the complex variable S. 

This equation may be re-written in matrix form as follows. 

 S = [ ] *
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Let us now convert it to symmetrical components, as follows. 

 S = Vp
T. Ip

*  =  [ ][ ] [ ][ ]*... s
T

s IV ΛΛ  

which may be expanded as follows. 

 S  = [ ] [ ] **.. s
TT

s IV ΛΛ  = [ ] [ ] *1.3. s
T
s IV −ΛΛ  =  3 Vs

T. Is
* 

i.e. S  = 3 (Va0 Ia0
*  +  Va1 Ia1

*  +  Va2 Ia2
*) 

This result can also be expected, as there are 3 phases in  each of the sequence 
components taking the  same power. 

Thus  P  = 3 (Va0 Ia0 cos φ0  +  Va1 Ia1 cos φ1  +  Va2 cos φ2) 


