Three Phase Theory - professor IR Lucas

As you are aware, to transmit power with single phase aternating current, we need two
wires (live wire and neutral). However you would have seen that distribution lines
usually have only 4 wires. This is because distribution is done using three phase and the
4th wire is the neutral. How does this help ? Since the three phases are usually 120° out
of phase, their phasor addition will be zero if the supply is balanced.
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Figure 1(a) — Three phase waveforms Figure 1(b) Phasor Diagram

It is seen from figure 1(a) that in the balanced system shown, the three phases, usually
designated R, Y, B corresponding to Red, Yellow and Blue, are equal in magnitude and
differ in phase angle by 120°. The corresponding phasor diagram is shown in figure 1(b).

VRr

The voltage between any of the phases and the neutral is called the phase-to-neutral
voltage or phase voltage V.

It is usua to call the voltage between any two lines as the line-to-line voltage or line
voltage V..

If the R-phase voltage is Vr = V,010, then the remaining phase voltages would be Vy =
V,0-2173 and Vg = V,0-4173.

Balanced Supply

A balanced three phase supply can be connected either in star asin figure 2 (a) or in delta
asinfigure 2 (b).
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Figure 2(a) Star-connected supply Figure 2(b) Delta-connected supply
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In a balanced three phase system, knowledge of one of the phases gives the other two
phases directly. However thisis not the case for an unbalanced supply.

In a star connected supply, it can be seen that the line current (current in the line) is equal
to the phase current (current in a phase). However, the line voltage is not equal to the
phase voltage.

The“neV0|tagesaredeﬁned aSsVgry =Vr—-Vy,Vyg=Vy -V, and Vgr=Vg—VRg.

Vg
VRry
Vg
VRry
Vve
Vy
Figure 3(a) Parallelogram addition Figure 3(b) Triangular addition

Figure 3(a) shows how the line voltage may be obtained using the normal parallelogram
addition. It can also be seen that triangular addition also gives the same result faster.

For a balanced system, the angles between the phases is 120° and the magnitudes are all
equal. Thus the line voltages would be 30° leading the nearest phase voltage.

Cadculation will easily show that the magnitude of the line voltage is V3 times the phase
voltage.

||_: |p , D\/LD:\/SD\/pD, DILD:\/SDIdD

Similarly in the case of a delta connected supply, the current in the line is V3 times the
current in the delta.

It is important to note that the three line voltages in a balanced three phase supply is
als0120° out of phase, and for this purpose, the line voltages must be specified in a
sequential manner. i.e. Vry, Vys and Vggr. [Note: Vay is 180° out of phase with Vyg so
that the corresponding anglesiif this is chosen may appear to be 60° rather than 120°.
Thusif the direction of Vy is selected as reference, then

Vg = VpDO, Vy = VpD-2T|/3 and Vg = VpD'4T|/3

and  Vey =V3V,@ /6, Vyg=v3V,0-mW2 and Vgg=v3V,0-7176
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Balanced Load

A balanced load would have the impedances of the three phase equal in magnitude and in
phase. Although the three phases would have the phase angles differing by 120° in a
balanced supply, the current in each phase would also have phase angles differing by
120° with balanced currents. Thusiif the current is lagging (or leading) the corresponding
voltage by a particular angle in one phase, then it would lag (or lead) by the same angle
in the other two phases as well (Figure 4(a)).

Vg
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Zp

Vy
Figure 4(a) Phasor Diagram Figure 4(b) Star connection Figure 4(c) Delta connection

The balanced load can take one of two configurations — star connection, or delta
connection. For the same load, star connected impedance and the delta connected
impedance will not have the same value. However in both cases, each of the three phase
will have the same impedance as shown in figures 4(b) and 4 (c).

It can be shown, for a balanced load (using the star delta transformation or otherwise),
that the equivalent delta connected impedance is 3 times that of the star connected
impedance. The phase angle of the impedance is the same in both cases.

Note: This can also be remembered in this manner. In the delta, the voltage is V3 times
larger and the current V3 times smaller, giving theimpedance 3 timeslarger. Itisaso
seen that the equivalent power is unaffected by this transformation.

Three Phase Power

In the case of single phase, we learnt that the active power is given by
P=VIlcoso

In the case of three phase, obviously this must apply for each of the three phases. Thus
P=3Vpl,cos@

However, in the case of three phase, the neutral may not always be available for us to
measure the phase voltage. Also in the case of a delta, the phase current would actually
be the current inside the delta which may also not be directly available.
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It is usua practice to express the power associated with three phase in terms of the line
guantities. Thus we will first consider the star connected load and the delta connected
load independently.

For abalanced star connected load with line voltage V| and line current I,
Vea =VL V3, lga=1IL
Zsa =Vsa ! lga =V N3IL
Sear = Vaalsar =V3VLIL

Thus Pga=V3V I cos®,  Qga=V3V I SN

For a balanced delta connected load with line voltage Vine and line current | ine
Viga=VL, ldeta= I /V3
Zgeita= Vdetta/ loata = V3VL/ I
Sueta = 3V datal deta = V3V LIL

Thus Pga=V3V I cos®  Qga =V3V I Sing

It is worth noting here, that although the currents and voltages inside the star connected
load and the delta connected loads are different, the expressions for apparent power,
active power and reactive power are the same for both types of loads when expressed in
terms of the line quantities.

Thus for athree phase system (in fact we do not even have to know whether it isaload or
not, or whether it is star-connected or delta-connected)

Apparent Power S=V3V. I,

Active Power P=+v3V_I_cos@

Reactive Power Q=V3V.I_sing
Analysis of three phase balanced systems

Since we know that the three phases are balanced and that the voltages (and currents) are
related to each other by 120°, we do not have to do calculations for each of the three
phases unnecessarily. We could calculate for just one phase (usually the A phase in a
system with phase sequence A-B-C). There are two common methods of doing this.

|
1

Zjine

Zjine ZL
L |

Zjine
— 1
| I

Figure 5 — Three phase system
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(a) Single circuit of a three phase system
Consider the 3 phase 3 wire system shown in figure 5 (with the neutral wire absent).
For a balanced system, the supply voltages Eg, Ey and Eg will be 120° out of phase.

Using Millmann’s theorem (or otherwise), it can be easily seen that the potentia of the
star point S of the load is equal to the potential of the neutral N of the supply. Thus
whether a neutral wire is present or not in the system, the analysis of the system can be
identical. Thus we will draw a neutral wire between S and N of zero impedance and do
our analysisin that manner.

Once the neutral wire is in place, and there is no potentia difference between S and N,
we could analyse only one single phase of the system, namely the “A” phase. This may
be redrawn asin figure 6.
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Figure 6 — One phase of Three phase system

In this case, the supply voltage E; is a phase voltage, the supply current is the phase
current I, the load voltage V,, is a phase voltage and the power P, is the power is one
phase.

If we compare with the line quantities, we have
E.=V3E,, lL=1, and P, =P/3

Usually, we are more interested in knowing the voltage and the power from practical
considerations, rather than the current. [For example, if | ask you the voltage and power
rating of a bulb in your home, you would know it. However if | asked you for the current
taken by the bulb, you would normally not be aware of the value but would probably
obtain it from the wattage and the voltage. The sameistruein alarge power system].

Thus we would like to reformulate the problem so as to give the voltage and the power at
the desired values, even at the expense of awrong current.

(b) Equivalent circuit for three phase balanced system

| —
1

=
Zjine \/3||_:\/3 |p P= 3Pp

Z
VL=V3 vpﬂ Z,
E=vV3E,

L 1

Figure 7 — Equivalent single phase of Three phase system
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Consider multiplying the source voltage E; in figure 6 by V3. This would increase both
theline current I, and the load voltage V,, by afactor of V3.

Since both the load voltage and the load current has increased by V3 times, the load
power would increase V3xV3 or 3 times.

Thus we see that such a circuit (figure 7) would have all voltages corresponding to the
line voltages, and all powers corresponding to the total three phase powers as desired.
The only quantity that would be in error is the line current which would appear as a
current V3 timestoo high.

This circuit is known as the equivalent single phase diagram and gives the voltage and
power as for the three phase system but with the current being in error by V3 times.

Let us consider an example to illustrate the use of the circuits.
Example

A three phase 400V, 50 Hz, balanced supply feeds a balanced load consisting of (a) three
equal single phase loads of (40 + j 30) Q connected in star, and (b) a three phase heating
load (purely resistive) of 1.8 kW.

Determine the supply current, supply power factor, active and reactive power supplied
and the value of the capacitances that must be connected in delta to improve the overall
power factor to 0.95 lag. Obtain the result using (i) one phase of the three phase system,
and (i) the equivalent single phase circuit.

Solution '

(i) Using one-phase diagram (figure 8) lo oY lp2
Z1=40+]30Q S Zu| | Ze VpT
E, = 400/V/3 =230.900
P, = 1.8/3 =0.6 kW =600 W |

280900 _ 230900 _, o0 oo P gure 8 — Single phase diagram

"7 40+ j30 500136.87°

[Note: Quite often, we take the phase voltage of the three phase 400 V system to be
230 V rather than the calculated value of 230.9 V. You would then of course get a
dightly different answer.]

In order to calculate I», we need not calculate Z, ,, but can use P=V | cos @.
600

02 = 30,91 =2.598010 [Note: angleis zero because it is purely resistive]
Thus lp=lp + 1 = 4.6190-36.87° + 2.598 = 6.293 —j 2.771 = 6.876[1-23.77° A
O supply current = 6.8760-23.77° A

supply power factor = cos(0—(-23.77)) =0.915 |lag

active power supplied =V3V_ I  cos@ =3 x 400 x 6.876 x 0.915 = 4360 W
reactive power supplied = V3V I, sin@ =8 x 400 x 6.876 x sin (-23.77) = 1920 var
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The capacitances are connected to improve the power factor.

Why do we want to improve the power factor ? This is because of the power factor is
low and to transfer the same amount of active power we need a greater amount of current
which in term means a much greater amount of power losses in the system, since power
loss is proportional to the square of the current.

Why do we use capacitors to correct the power factor ? This is because most normal
loads have an inductive component (for example, a fan has a winding and a fluorescent
lamp has a choke, both of which are basically inductors). We can compensate for the
reactive power of an inductive reactance by the reactive power of a capacitive reactance.

In this particular example, we are required to improve the power factor to 0.95. Why to
0.95 ? Why not to 1.0, which would give the lowest power factor ? This is because
improvement of power factor means additional capacitance. We try to use only so much
capacitance as would give us a financial benefit. When we improve the power factor
angle from —36.87° (corresponding to power factor = 0.8 lag) to —18.19° (corresponding
to a power factor of 0.95) we get an improvement of (0.95 — 0.8 = 0.15 or 0.15/0.8 =
18.75%). Whereas when we improve a similar amount of angle from —18.19° to 0°, we
get an improvement of only (1.0 — 0.95 = 0.05 or 0.05/0.95 = 5.3%). In fact if we
improved a similar amount from —53.13° (corresponding to a power factor of 0.6) to
—36.87° we get an even larger improvement (0.8 — 0.6 = 0.2 or 0.2/0.6 = 33.3%). Thus
we can see that as we come closer and closer to unity power factor, the benefits rapidly
decrease. Thusinindustry it is usual to improve the power factor to avalue slightly less
than unity power factor, and this value can be theoretically calculated using such
information as the cost of capacitors, the electricity tariff etc.

Let us get back to doing the calculations. When the power factor isimproved to 0.95 lag,
using a pure capacitance, then the amount of active power does not change but remains
the same as before. i.e. P = 4.360 kW. However, the reactive power will decrease such
that the overall power factor is 0.95. P

[0.95 is obviously power factor lag, as to correct to
0.95 power factor lead would be even more costly

than to improve to unity power factor and hence Qnew
would absolutely have no advantage] Qcap
Figure 9 shows the diagram showing the active and Q

reactive power during power factor correction. Figure 9 — Power factor correction

The capacitance must add the difference between origina amount of reactive power
supplied and the new amount of reactive power supplied.

Q=1920k var
with the new power factor, Qqy is calculated from

Qu = Ptan@,,, =4.360tan18.19° =1.433 k var

0 Qcap = 1.920 — 1.433 = 0.487 k var
each of the 3 capacitors would provide one-third this reactive power.
0 Capacitance required = 0.487/3=0.162k var =V?*C w
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If the capacitors are connected in delta, then the line voltage would appear across each.
O 162 =400°C 100 Tt
[0 C=3.230 pF each connected in delta

If the capacitors are connected in star, then the phase voltage would appear across each.
O 162=230.9°C 100 T
[0 C=9.689 uF each connected in star

(i) Using equivalent single-phase diagram (figure 9) | = \/;L Iy 2
e el ]
E. = 400000
P = 18kw =1800W i

0 I1:\/§I L= 4000J0 _ 400010

= - _=80-36.87° Figure 9— Equivalent diagram
40+ j30 500136.87
In order to calculate I, we canuse P=vV3 VI 2 cos@ =V |, cos ¢.

_ 1800
400x1

Thusv3l =1=1;+1, = 80-36.87° + 45=10.9—j 4.8 = 11.9100-23.77° A

O supply current = 11.9100-23.77°/vV3 = 6.87600-23.77° A
which is the same asin the earlier method. Remaining calculations will be similar.

al, =4.500 [Note: angleis zero becauseit is purely resistive]

Unbalanced three phase systems

An unbalanced three phase system is one which is not perfectly balanced. It may be
caused by the supply being unbalanced, or more usualy the load being unbalanced or
both. In such a case, knowledge of the currents or voltages in one phase does not tell us
the currents or voltages in the other phases. Thus all phase quantities must be
independently determined. Let us consider some of the common unbalanced situations
to see how this may be done.

(a) Star connected supply feeding a star connected load

| —
| S|

Zjine

&) Znewrd

N Il Ziy
= Z
Z 2\ S Zjine /Q:\%\
s |

Eg Ev )
Zjine |
—

LT

Figure 10 — Unbalanced Three phase system
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(i) If Znatra is considered zero, each individual phase current can be independently
determined from the supply voltage in that phase and the impedance of that phase.

= E, EB

, oy = , Il =
Zs + ZIine + ZLR Zs + ZIine + ZLY Z, + ZIine + ZLB

ILr=

Then the load voltages etc can be determined.

(ii) If thereis aneutral impedance, then using Millmann’s theorem, we will first have to
determine the voltage of the star point of the load with respect to the supply neutral.

1 1 1 1
Egq+ E, + Eg + :
V - z YV - Zs + ZIine + ZLR Zs + ZIine + ZLY Zs + ZIine + ZLB ZneutraJ
Ny 1 1 1 1
+ + +

Zs + ZIine + ZLR Zs + ZIine + ZLY Zs + ZIine + ZLB z
from which Vg is known.
Thus the load currents can be determined from

Er Va4 E, -Vq E; Vg4
ILr = y oy = , g =
Zs + ZIine + ZLR Zs + ZIine + ZLY Zs + ZIine + ZLB
Hence the remaining quantities can be determined.
(iii) If the system is a 3-wire system, rather than a 4-wire system, the analysisis the

same as if Zpera Were oo (i.e. 1/zpera = 0). Thus again Millmann’s theorem is used to
determine V gy and the load currents are then determined.

(b) Delta connected supply feeding a star connected load

If the supply was connected, not in star but in delta (figure 11), which is not the case in
practice, then we would have to write the Kirchoff’s current law for the loops and solve
asanormal circuit problem.

Zjine

e S
Zjine VAR:

| — |
| S|

Zine

1

Figure 11 — Delta supply feeding star load
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(c) Delta connected supply feeding a delta connected |oad

| —
1

Zjine

Figure 12 - Delta connected supply feeding a delta connected load

When a delta connected supply feeds a delta connected load (figure 12), which is not
usual, then the line voltages are known so that the currents inside the delta can be
obtained directly from Ohm’s Law. The line currents can then be obtained by phasor
summing of the currents inside the delta.  The remaining variables are then obtained

directly.
(d) Star connected supply feeding a delta connected load

| |
| |

Zjine

T |

Figure 13 - Star connected supply feeding a delta connected |oad

When a star connected supply feeds a delta connected load (figure 13), then from the
phase voltages the the line voltages are known so that the currents inside the delta can be
obtained directly from Ohm’s Law. The line currents can then be obtained by phasor
summing of the currents inside the delta.  The remaining variables are then obtained

directly.

Thus basically, any unbalanced system can be calculated using the basic network
theorems.

Three Phase Theory & Symmetrical Components — Professor J R Lucas November 2001



Symmetrical Components (or Sequence Components)
Phase Sequence

A three phase system of voltages (or currents) has a sequence (or order) in which the
phases reach a particular position (for example peak value). Thisis the natural sequence
of the supply. According to usual notation, we would call the sequence R-Y-B or A-B-C.

If we consider a balanced system of voltages (or currents) they will have only the natural
sequence, and there will no other components present. However, Fortescue has
formulated that any unbalanced system can be split up into a series of balanced systems.

[Thisis like saying that any force can be broken up into its components along the x-axis,
y-axis and z-axis. The advantage of such a decomposition isin the analysis of more than
one quantity]

In the case of unbalanced three phase system, such as shown in figure 14, the unbalanced
system can be split up into 3 components: (i) a balanced system having the same phase
sequence as the unbalanced system, (ii) a balanced system having the opposite phase
sequence to the unbalanced system (rotation of phasors is always anticlockwise whether
they are in the same sequence or opposite, so that it is the order of the phases that
changes, and not the direction of rotation), and (iii) a balanced system of inphase
guantities.

Positive Negative  Zero
Sequence Sequence Sequence
R R1
R
= Y,

W

Bl Yl BZ RO)Y()!BO

B Figure 14 — Decomposition of unbalanced three phase

In any three phase system, the phase quantities R, Y and B (or A, B and C) may be
expressed as the phasor sum of:
- aset of balanced positive phase sequence quantities A;, B; and C;

(phase sequence ab-c : same phase sequence as origind
unbalanced quantities),

- aset of balanced negative phase sequence currents A,, B, and C,

(phase sequence a-c-b: opposite phase sequence to original
unbalanced quantities),

- aset of identical zero phase sequence currents Ao, Bp and Cq

inphase, no phase sequence).
(inp phase sequence) Figure 15 - Regrouping
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It is to be noted that the origina unbalanced system effectively has 3 complex unknown
guantities A, B and C (magnitude and phase angle of each isindependent).

It is aso to be noted that each of the balanced components have only one independent
complex unknown each, as the others can be written by symmetry. Thus the three sets of
symmetrical components also have effectively 3 complex unknown quantities. These are
usually selected as the components of the first phase A (i.e. Ap, Ay and Ay) . One of the
other phases could have been selected as well, but al 3 components should be selected
for the same phase.

A can be obtained by the phasor addition of Ag, A; and A,. Similarly B and C. Thus

A = Ag + AL + A,
B = Bo + B + B,
C = Co+CL +GC,

If the balanced components are considered, we see that the most frequently occurring
angleis 120°.

In complex number theory, we defined j as the complex operator which is equal to V-1
and a magnitude of unity, and more importantly, when operated on any complex number
rotates it anti-clockwise by an angle of 90°.

ie j=v-1 =1090°

In like manner, we can define a new complex operator a which has a magnitude of unity
and when operated on any complex number rotates it anti-clockwise by an angle of 120°.

i.e.o = 10120° = - 0.500 +j 0.866
Let us again examine the sequence components of the unbalanced quantity.

A A1
As
= Y2
=a’B; W
C, B, C Ao=Bo=Co
C B =0°A; =0A; =0A;

Figure 16 — Decomposition of unbalanced three phase

We can express all the sequence components in terms of the quantities for A phase using
the properties of rotation of 0°, 120° or 240°. Thus

A = Ag+ AL + A
B = Ao +0%A; + 0A,
C = Ag + 0A; + a?A,

This can be written in matrix form.
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A0 O 1 1TA0
Bord o agAp
CH A o o*FAE
Ph [A] =Y

This gives the basic symmetrical component matrix equation, which shows the
relationship between the phase component vector Ph and the symmetrical component
vector Sy using the symmetrical component matrix [A]. Both the phase component
vector Ph and the symmetrical component vector Sy can be either voltages or currents,
but in a particular equation, they must of course al be of the same type.

Since the matrix is a [3x3] matrix, it is possible to invert it and express Sy in terms of
Ph. But to do this, it would be convenient to first express some properties of a.

Some Properties of a

a = 10213 or 10120°
o? = 10413 or 10240° or 10-120°
al = 102n or 10360° or 1

e o®-1 =(a-(a?+a+1) =0

Since a iscomplex, it cannot be equal to 1, so that a - 1 cannot be zero.

a
O a’+a+1=0
This aso has the physical meaning that the three sides of an a?
equilateral triangles must close.
Also a'~a?and a2 a Figure 17 Phasor Addition

Now let uslook at inverting the symmetrical component matrix.
I nverse of Symmetrical component matrix

B 1 , 1% Oa*-a®* -(a’-a) a-a’0
so that [A] :% a apn-= %E—(az—a) a’-1 1-a B
H a a’f Ha-a? 1-a  a?-1f
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[@(1-a) a(l-a) a(l-a) O
4 _ 1 0
N = ~@id-a) -@-a)a+]) 1-a £
Hr(1-a) l-a -@A-a)(a+DH
and the discriminent A = 3(a - a?) = 3a (1-a)
Substituting, the matrix equation simplifiesto give

1 a 0O
_ _ 0
= Q% (a+1) 1 0
1 —-(a+1){
Sinceal~a? o %2 a and 1+a+a® = 0, thematrix equation further simplifies to
1D. 1 10
1 2
[A]” = 5% cr2 a”n
& af

Itisseen that o isthe complex conjugate of a?, and a? isthe complex conjugate of a.
Thus the above matrix [A]™ is one-third of the complex conjugate of [A].

e [A]'=3IA]
This can now be written in the expanded form as

AD D1 LOAD
[f“‘lm"gr a a %
== @ a’ aHCH
Y [\l Ph

Examplel

Find the symmetrical components of the unbalanced system of the following voltages
100° V, v30-120° V and 2090° V.

VB: 2V
Solution
Writing the matrix equation
WRO 1 DD ].DOO D ______ VR: 1v
NS % a aZDD 30-120°7

Ve, B @r a’ a@% 2(190° E e 3y

Expanding the equation gives Figure 18 Unbalanced Phasors
Vro= Y4[100° +/30-120°+ 20907 = 34 [1-va12—j3/2+j2] = 14[0.134+] 0]

=0.045 +j 0.167 = 0.173075.0° V
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Vg1 = % [100° +10120°xv30-120° + 10240°%2090°] = % [1+V3+/3—j1]

= % [4.464 —1] = 1.488 —]0.333 = 1.525(1-12.6° V

VRo = % [100° +10240°%xv30-120° + 10120°%2090°% = % [1-V3/2+j3/2-V3—-]1]
= % [-1.598 +j0.5] = -0.533 +j0.167 = 0.55801162.6° V

Graphical Method of Solution

The method of determining the sequence components from the phase components and the
phase components from the sequence components are similar except that the correct
equation must be used.

The solution of the equations may also be done graphically. The advantage of a graphical
solution is that it gives an insight to the components very quickly without the need of a
rigorous analysis. In the graphical analysis, in addition to phasor addition, multiplication
by a or a? would correspond to an anticlockwise rotation of 120° or 240° respectively.

This can be best understood by an example. V=2V
Example 2

For the unbalanced set of phasors shown in figure 19,
verify graphically the sequence components obtained in
example 1.

Solution Vr=1V
Ve O 1 10OV

[
s
Yo B H o® aHYsH

VRo = }:/.3[\/R +Vo +VB]

or 3Vro = [VR +V, +VB]

It is more common to plot 3Vgo rather than Vo and to Z
obtain one-third the result. This is shown in figure 20. It

can be seen that the resultant has a magnitude of about

half that of Vg (say 0.5) and an angle of dightly greater

than that of the Vy (say 75°). This correspondsto 3 Vgo.

If we compare the result with that of the anaytical Figure 20
method in example 1, we see that the value for 3 Vg
should be 3x0.173075.0° V agreeing with the
observation.

Similarly, Vg = %B/R +av, +a2VB]

Py

<

Vy=V3V

Figure 19 Unbalanced Phasors
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or Vg = b/R+C¥VY +C¥2VBJ

The phasor addition is shown in figure

21. It can be seen that the resultant has

a magnitude of dightly greater than one

and half times that of Vg & Vy (say

4.2) together and an angle close to 15°

below the horizontal axis. This

corresponds to 3 V. 240
120°

If we compare the result with that of the
analytical method in example 1, we see
that the value for 3Vgy should be
3x1.525[1-12.6° V roughly agreeing
with the observation.

Figure 21

[An accurate result could have been obtained if actual measurements had been done ].
Similarly the negative sequence can be obtained as follows.

Vg1 = %NR +GZVY +aVB]

or 3Vg1 = b/R+GZVY+aVB]
0

This phasor addition is shown in figure 120
22. It can be seen that the resultant has

a magnitude of dlightly less than that of

Vy (say 1.7) together and an angle close

to 15° above the negative horizontal

axis. Thiscorrespondsto 3 Vgo.

If we compare the result with that of the - | 240°
analytical method in example 1, we see

that the value for 3Vgy should be

3x0.5580162.6° V roughly agreeing Figure 22

with the observation.

Summary
Vp=[A] Vs, I =[A] Ls

Vi=YIAl Vo,  L=%IAT 1,

1 1
a’ a
a a?
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. N =5IA =

Q
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1
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Sequence | mpedances
Let us now consider how the impedance appears in sequence components.

To do this we must first look at the impedance matrix in phase components which we
know.

Vo = [Zllp

Substituting for V, and I, in terms of the symmetrical components we have
[ATVs = [Z]. [A] s

pre-multiplying equation by [/\]'l we have
Vs = [AI[Z]. [N 1

This gives the relationship between the symmetrica component voltage Vs and the
symmetrical component current ls, and hence defines the symmetrical component
impedance matrix or Sequence Impedance matrix.

Thus [Z] = [NIZ) Al = 5 [ATIZ)[A]

In a similar manner, we could express the phase component impedance matrix in terms of
the symmetrical component impedance matrix as follows.

— -1 — *
[Z) = [ALIZY [A] = 3[NZd. N
The form of the sequence impedance matrix for practical problems gives one of the main
reasons for use of symmetrical componentsin practical power system analysis.

If we consider the simple arrangement of a 3 phase transmission line (figure 23), we
would have the equivalent circuit as

Ra La

AN 7000

Ny Ma(@(;@%\\ca
R. |vlbc( L, /

AVAVA — 0000 —

Figure 23 — 3 phase transmission line

If we think of an actual line such as from Victoriato Kotmale, we would realise that all 3
phase wires would have approximately the same length (other than due to differences in
sagging) and hence we can assume the self impedance components to be equal for each
phase.

When a current passes in one phase conductor, there would be induced voltages in the
other two phase conductors. In practice al three phase conductors behave similarly, so
that we could consider the mutual coupling between phases also to be equal.
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i.e Mab Mbc Mca

In such a practical situation as above, the phase component impedance matrix would be
fully symmetrical, and we could express them using a self impedance term Z5 and a
mutual impedance term Z,.

Thus we may write the phase component impedance matrix as

2,]= %

m Zm ZS E
We may now write the symmetrical component impedance matrix as
1 O, Zm z Ol 1 10

[z.]= %IN" [z,]IA] = @r a a’B, z 2,4 o

@r a’ o, Zm ZEH «a GZE

z ZD

m

1EL 1 15& +2z z. +(@+a?z, z +(@+a’)z, O
25% a DDZS"'ZZm a’z, +(1+a)z, azs+(1+az)zmg
A a® af +2z, az,+1+a’)z, a’z, +(@1+a)z, {

This can be simplified using the property 1+a+a® = 0 asfollows
ﬂ 1 10z +2z, z, -7, z,-z, 0O

[Z]- % a GZD% +2z a’(z,-z,) a(zs—zm)g
@0’ a JF +2z, a(z-z,) a’(z-z,)H

3z, +2z,) 0 0 B

:%D 0 @+a®+a’)z, - z,) 0 B

H O 0 Q+a®+a®)(z, -z,)H
[z, +2z,) 0 0 O Z, 0 000
e lzl=g o (@-z) 0o g= g0 z op
E 0 0 (Zs - Zm)a EO 0 ZZE

We see an important result here. While the phase component impedance matrix was a
full matrix, athough it had completely symmetry, the sequence component impedance
matrix is diagonal. The advantage of a diagona matrix is that it allows decoupling for
ease of analysis.

To understand the importance of decoupling (or a diagonal matrix), let us look at the
following simple algebraic problem.

5x+3y+3z=6
3Xx+5y+3z=4
3x+3y+52z=-10
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You can see that there is a lot of symmetry in the problem, if formulated as a matrix
equation.

5 3 30O 06 0O

35800 = 04
B 3 50 B8

However, | am amost sure you would not be able to givethe solutionx =3,y =2,z=-5
of this equation mentally.

However if | give you the following set of equations

4x+0y+0z=12

Ox+5y+0z=10

Ox+0y+3z=-15
which corresponds to a diagonal matrix, | am sure all of you would have been able to get
the correct solution mentally and in a flash. This is because the solution of x requires
only the first equation, that of y requires only the second equation and that of z only the
third equation.
Power associated with Sequence Components
With phase components, power in asingle phase is expressed as

Pohase =V | COS @

Thus in three phase, we may either write P = V3 V| I, cos @ = 3 V, I, cos @for a
balanced three phase system. However, with an unbalanced system this is not possible
and we would have to write the power as the addition of the powersin the three phases.

Thus Apparent Complex Power S = Vala + Vply + Vele
The active power P is obtained as the Real part of the complex variable S.
This equation may be re-written in matrix form as follows.

O

[V Vi V, ] ab D‘V
H-H
Let us now convert it to symmetrical components, as follows.

s=v, 1, = [Alv. ] [ALL]

which may be expanded as follows.

s=Vi[AI'[A L= VoAl = 3wl
i.e S = 3(Va()|a() +Va1|a1 +V32|az)

This result can also be expected, as there are 3 phases in each of the sequence
components taking the same power.

Thus P =3 (Vo lpCos@ + Vg laCOS@ + Vg COS@)
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