STUDENT HANDBOOK 2020 Intake

DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

CONTENT

CONTENT	1
THE DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING	1
WELCOME TO THE DCPE FAMILY!	
WHAT IS CHEMICAL AND PROCESS ENGINEERING?	5
WHY STUDY CHEMICAL AND PROCESS ENGINEERING?	6
CAREER OPPORTUNITIES	7
TESTIMONIALS	
THE JOURNEY OF DCPE	
ACADEMIC STAFF MEMBERS	
UNDERGRADUATE DEGREE PROGRAM	
Graduate Program Outcomes (POs) Profile	
Program Educational Objectives	
Graduation Credit Requirement	
Faculty Academic Committee Coordinator	
Semester Coordinators	
Teaching and Learning	
Curriculum	
Focus Area	
Minors	
Faculty Electives	
Humanities Subjects	
Modules	
Semester I	
Semester II	56
Semester III	60

Semester IV
Semester V
Industrial Training
Semester VI77
Semester VII
Semester VIII
Research
Comprehensive Design Project
Industrial Training 107
Awards Available for DCPE Students
INDUSTRY COLLABORATION 111
COLLABORATIONS WITH INTERNATIONAL UNIVERSITIES 112
SPECIAL EVENTS AND PROGRAMS 113
SOCIETIES/CLUBS
LABORATORY FACILITIES AND RESOURCES 117
OTHER INFORMATION
FLOOR PLAN OF DCPE CENTER 127
FLOOR PLAN OF DCPE NORTH AND SOUTH WINGS 129

THE DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING

Vision

Delivering Chemical and Process Engineering knowledge, skills and innovation for a sustainable tomorrow

<u>Mission</u>

The Department of Chemical and Process Engineering will strive to educate, conduct research and offer consulting services with dedication, devotion and commitment and aim to be a place of excellence through internationally recognize programs for the benefit of the society

The Department of Chemical and Process Engineering (DCPE) at University of Moratuwa is one of the premier engineering departments in the country. Being operated with a vision to standardize, optimize and scale up the production processes in a commercially viable manner through sustainable utilization of raw materials, the DCPE has its unique mission to satisfy its objectives.

The DCPE offers the Honours Degree in Bachelor of Science of Engineering in the field of Chemical and Process Engineering. Environmental Engineering, Energy Engineering, Food and Bioengineering, Polymer Engineering, and Petroleum Engineering are the focus areas available in the DCPE for the undergraduates. DCPE also offers programs for postgraduates. M.Sc./ PG Dip. in Polymer Technology and M.Sc./ PG Dip. in Sustainable Process Engineering are the taught M.Sc. programs available and DCPE conducts research programs leading to M.Sc., M.Phil., and Ph.D. degrees.

The competency and friendliness of academic and academic support staff members, the stimulating atmosphere of the department with well-equipped laboratory facilities and many other valuable resources offer the students a better learning environment to equip them with necessary knowledge and skills required for the Chemical and Process Engineering graduates.

Being established in 1972 only with 8 undergraduates, DCPE proudly demonstrates much evidence for its immense growth during its journey through the years. The number of undergraduate student intake has been increased up to 80 students per batch, and at present, the student body of the DCPE is consisted with over 300 undergraduates studying at various levels of their bachelor's degree program and postgraduate programs.

Research, being an integral part of the curriculum of undergraduate and

postgraduate studies, not only boosts the research potential of the students but also benefits the field of Chemical and Process Engineering through the huge contribution of better solutions and innovative ideas into it. The availability of well-functioning laboratory facilities with well-guided supervision enhances the value of the research activities.

The collaboration of the DCPE with the industry is also huge. The industry facilitates the DCPE with internship opportunities, competent and well-experienced mentors for the mentoring programs, and to organize field visits in order to enhance the competencies of the undergraduates. The close relationship with the industry facilitates the prospective fresh graduates from the DCPE to find career opportunities with ease. The Department Industry Consultancy Board (DICB) strengthens the bond between the department and industry while improving the value of the degree program to mold the proficiency of the future-graduates to fulfill the industrial requirements.

The strong affiliation between the department and industry is beneficial for the industry as well. The DCPE offers consultancy services for the industry through various industrial projects and research to grant the industry with many valuable innovations and better solutions for

the sustainable development of the industry and the country.

The DSI incubator provides proof for the strong bond between the department and the industry. The industry and academic institutes also offer the prospective students of DCPE with many academic awards and scholarship positions in recognition of their competencies.

The DCPE not only encourages and promotes the students to associate with professional institutes and various societies and associations but also encourages and facilitates many extra-curricular activities and sports activities in order to enhance their knowledge and soft-skills as prospective professionals.

The time at the DCPE under the wings of well-qualified and well-experienced academic staff, in a well-established and well-maintained stimulating environment is definitely a career developing and an exciting experience that every student should encompass.

The DCPE at the University of Moratuwa is a blessing in every aspect as it constantly strives to deliver Chemical and Process Engineering knowledge, skills and innovation for a sustainable tomorrow through education, research and consultancy services with dedication, devotion and commitment.

Contact Information

Department Office

E-mail	: cpe@uom.lk	
Phone (General)	: +94 112 640 051	Ext. 4100
Direct	: +94 112640 330	
Fax	: +94 112 650 622	
Website	: http://www.cpe.mrt.ac.lk	

Head of the Department: Prof. Shantha Egodage

E-mail	: head-cpe@uom.lk	
Phone (General)	: +94 112 640 051	Ext. 4101
Direct	: +94 112 640331	
	+94 112 650 281	

Online presence

- : University of Moratuwa Department of Chemical & Process Engineering
- : Chemical and Process Engineering Student Society University of Moratuwa

: Department of Chemical & Process Engineering, University of Moratuwa

- : Department of Chemical and Process Engineering UOM
- : Chemical Engineering Students' Society UOM

WELCOME TO THE DCPE FAMILY!

As the Head of the Department, I would like to take this opportunity to thank you for joining the Department of Chemical Process Engineering (DCPE)."

The DCPE at the University of Moratuwa is one of the premier engineering departments in the country. Being operated with a vision to standardize, optimize and scaleup the production processes in a commercially viable manner through sustainable utilization of raw materials, the department has its unique mission to satisfy its objectives.

The department named Chemical Engineering, was first established by gazette notification on 15th February 1972 at Katubedda Campus of the University of Ceylon with eight students. The degree program, originally termed as Chemical Engineering and Fuel Science, was restructured, and renamed as Chemical and Process Engineering in 1998.

The academic staff of the DCPE consists of twenty-two fulltime members including two senior professors, seven professors and six senior lecturers, who are all well-qualified in the field and lead high quality research in a wide spectrum of areas. In addition, the Department is assisted by a dedicated team of academic support and technical staff. The Department has strong links with the industry and conducts collaborative tasks of research and development. Presently, we have one of the oldest incubators in the University for conducting product and process development for four companies of the DSI Group.

At present, the DCPE accommodates 400 undergraduates (85 in each intake) and postgraduate students. Our students demonstrate excellence not only in academic activities but also in sports and other extracurricular activities, for which the Chemical Engineering Student Society (ChESS) offers a paramount platform where several annual events of a wide variety are organized. In addition, our alumni, around 1200 graduates, have rewarding careers in the chemical and process industries, universities, and research institutes, both locally and internationally. Many of our most dedicated alumni made their way into outstanding leadership roles and continue to support the Department in a variety of ways.

Historically CPE students have shown the excellence in sports and other extra-curricular activities. Chemical Engineering Student Society (ChESS) is the hub for the student activities in the department and numbers of annual events are organized by the CPE students.

Wish you all the best for your future endeavors in the DCPE.

Prof. (Mrs.) Shantha Egodage Head of the Department

WHAT IS CHEMICAL AND PROCESS ENGINEERING?

Chemical and Process Engineering is the profession in which knowledge of mathematics, chemistry, physics, biology and other natural sciences gained by study, experience and practice is applied with judgment to develop economical ways of using materials and energy for the benefit of mankind.

More typically, they turn raw materials into valuable products. The necessary skills encompass all aspects of design, testing, operation, control, scale-up, and optimization. Hence this requires a detailed understanding of the various "unit operations", such as distillation, mixing, evaporation, crystallization, and biological processes that make these conversions possible.

Resting on the above foundations the Chemical and Process Engineering sprout higher and higher utilizing mass, momentum and energy transfers hand along with thermodynamics and chemical kinetics. It would be correct to say that the term Chemical in Chemical and Process Engineering refers more towards the knowledge and experience in terms of the applied sciences.

The breadth of scientific and technical knowledge inherent in this profession has caused world scientists to describe the Chemical and Process Engineer as the "Universal Engineer".

WHY STUDY CHEMICAL AND PROCESS ENGINEERING?

Why Chemical Engineering?

- A growing global profession
- A large manifold of <u>occupations</u> with <u>diverse professional experience</u> and <u>excellent career progression</u>
- To make the path for becoming an <u>entrepreneur</u> with your own passion for engineering, technology or management.
- To actively <u>contribute towards solving urgent issues</u> such as the energy crisis and pollution, and <u>work towards achieving sustainability</u>
- To <u>make a difference</u> not only in your economical, mental and career satisfaction but to satisfy the aspirations and necessities of the society

CAREER OPPORTUNITIES

There are a countless number of industries where Chemical and Process Engineering is used in. As examples petroleum and industries. mineral petrochemical processing, advanced materials, food and beverage processing, pharmaceutical, biotechnological industries, polymer industries, ceramic industries, electronic base industries and much more. Chemical and Process Engineering works hold in hands with fellow engineering disciplines such as mechanical. electrical and electronics, civil and material science.

The broad basis of their scientific, engineering, technological and management education upgrade the applications of the Chemical and Process Engineering skills in any other sister fields such as business, supply chain, process analysis, health and safety and etc. which do not seem like a result of chemical and Process Engineering evolution.

Chemical Engineers might expect to work in,

- Chemical, petroleum and petrochemical industries
- Power generation
- Steam engineering
- Environmental protection and natural resource utilization
- Renewable energy engineering
- Food and beverage processing
- Biochemical and biomedical engineering
- Pharmaceutical industry
- Processing of electronic and photonic devices
- Polymer engineering
- Computer aided process control engineering

- Advanced materials manufacturing industries
- Ceramic industries
- Textile industries and etc.

Some **local companies** where our graduates play key roles:

- Ceylon Petroleum Corporation
- INSEE Cement, Puttlam
- Melwa Cement, Mirijjawila
- Unilever Sri Lanka Ltd
- Hemas Holdings PLC
- Industrial Solutions Lanka (Pvt) Ltd
- Sri Lanka Institute of Nanotechnology (Pvt) Limited
- IFS R&D International (Pvt) Ltd, Sri Lanka
- MAS Holdings (Pvt) Ltd
- Lanka Sugar Company Pvt Ltd
- Nestle Lanka PLC
- Ceylon Biscuits Ltd
- Asian Paints (Pvt) Ltd
- Fonterra Brands Lanka
- Ceylon Cold Stores

Some **foreign companies** where our graduates play key roles:

- Veolia Water Technologies, USA
- Ontario Nuclear Power Generation, Canada
- Aker Solutions, Norway
- Wood Consultancy, Norway
- Safetec Nordic AS, Norway
- Keppel Offshore & Marine, Singapore
- Ecochem Bangladesh Pvt Ltd, Bangladesh
- Schlumberger, USA
- Abu Dhabi Oil Co., Ltd., UAE
- IFS R&D International (Pvt) Ltd, Norway

TESTIMONIALS

Isuru Lakshan - DCPE 2016 batch Gold medalist, 2021 General Convocation

With a passion for chemistry from my A/L's, I always wanted to be a Chemical and Process Engineer when I got selected to the University of Moratuwa. But with my time in the department, I realized that chemical engineering is not chemistry but also a broader discipline related to each and everything we use in our day-to-day lives. The fundamentals of Chemical and Process Engineering are applied in almost all industries even though they are not significantly visible to the outside. From simple mass and energy balance to more complex situations, from simple process controls to advanced process controllers, modeling and simulations and many more all lie in here.

The curriculum for this degree program is well developed to enhance the way of thinking of undergraduates towards the thinking of a professional engineer. The academic staff of the department works their best to share their knowledge with undergraduates in an unbelievably friendly manner. That guidance helped me a lot undergraduate throughout my degree program. A well-guided industrial exposure through industrial training helped me a lot to understand the gap between theoretical knowledge that we gain in the university and the practical applications of those in reallife. With the evolving technologies, it creates a gap between current technologies and future technologies so chemical and process engineering has good research

potential to fill up those gaps to change the future of the world for the betterment.

So Being a Chemical and process engineer will provide you with a solid career path either in academia or industry.

Kalindu Fernando 2014 batch Ph.D. candidate CBE, HKUST

From my school days, I was curious about how people change various materials to make innovative useful products. After my schooling, I entered the faculty of Engineering, at the University of Moratuwa in search of learning how to design and transform the raw materials via value addition to finished products. Then, I found that Chemical and Process Engineering is the best option for me to explore my dreams.

I was desirous on learning the fundamentals of Chemical and Process Engineering and was able to obtain a first-class honors degree with a minor specialization in Entrepreneurship. Then, I had a great desire to widen my knowledge further, and I started my postgraduate studies at Hong Kong University of Science & Technology (HKUST) after briefly serving at the department as a graduate instructor.

Currently, I am a prestigious awardee of the Hong Kong Ph.D. Fellowship Scheme (HKPFS) at the Department of Chemical and Biological Engineering at the Hong Kong University of Science & Technology. I am focusing on developing novel models to predict the functional behavior of biomolecular systems more efficiently and

STUDENT HANDBOOK 2020 INTAKE

affordably using Molecular Dynamics and Monte Carlo simulations.

Although the world trends are dynamic, if you follow your passion with dedication, there are plenty of doors willing to open for you to be an expert in the field of your choice!

Malsha Samarasiri (2014 batch) PhD Student Nanyang Technological University, Singapore.

After hearing about the unfortunate story of the identification of toxic heavy metals in Sri Lankan rice, I obtained my inspiration for being a food researcher. Since food engineering is one subarea under Chemical and Process Engineering and knowing about the friendly culture in DCPE, I selected this field without any hesitation. It was the turning point of my journey where I learnt many things, developed both technical and personal skills and met a supportive community.

I graduated from DCPE with a specialization in Food and Biochemical Engineering. After working at GlaxoSmithKline Pharmaceuticals and IFS Sri Lanka, I was fortunate to join DCPE as a lecturer for one year. There I gained good academic exposure and great opportunities. Currently, I am a second-year PhD student at NTU under the Food Science Technology program and researching on sensory properties of mushrooms for the potential as a meat alternative.

Chemical and Process Engineering is a field with the scope of "microchips to potato chips" where you can fly beyond the limits. "Love what you do; do what you love!"

Dhanuka Anthony (2011 batch) Head of Operations and Production -Stretchline Holdings, Indonesia

I currently work in the capacity of a Regional Management Trainee-Operation Management for Stretchline Holdings which is a part of the MAS group. I am currently based in Indonesia and will be transferred to the operations in China by the end of the year. Although I am technically not working along the traditional lines of what a Chemical & Process Engineering degree stipulates the amount of relevance is quite high. I was previously working at GSK also as a management trainee.

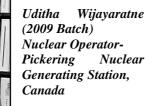
The best thing about the Chemical and Process Engineering at UOM is that the options it opens are limitless. You can find relevance to almost any industry in at least a few subject matters. This comes as a huge advantage when approaching the job market as it does not limit you to a small number of companies. Especially working in the manufacturing sector Unit Operations, Heat and Mass transfer etc., are subject matter that come in handy at any point in time. Apart from that soft skills improvement is definitely a big advantage in standing out in the job market.

Samavath Mallawarachchi (2011 batch) PhD Student – Texas A&M University

Department of Chemical and Process Engineering, University of Moratuwa was the place which laid the foundation for my career as an engineer. The four years spent at the department imbued me with a wide spectrum of knowledge and skills, which prepared me for pursuing a doctoral degree in Biological Engineering. At the end of my undergraduate degree, I was able to obtain the gold medal for the highest GPA in DCPE, which I believe is a great achievement. During my years as a graduate student, I have been able to engage in research projects in a variety of areas including drug delivery, enzyme kinetics and molecular simulations. The fundamentals learned at DCPE allowed me to successfully work over multiple research areas. Also, it allowed me to look at the research problems in an engineering perspective and see how research can be applied to provide solutions to real life

Department of Chemical and Process Engineering equips its undergraduates with a broad range of knowledge, which allow them to successfully transition into a career path they desire, such as industry or academia or entrepreneurship. Also, our department is blessed with a highly qualified and experienced academic staff who has the potential to bring the best out of students, in both academic and professional aspects. Developing a versatile skillset including technical, critical thinking, communication, and leadership skills to go along with that knowledge would enable DCPE graduates to excel in whatever career they choose.

problems.


The Chemical and Process Engineering curriculum provided me with a thorough understanding of the Process Engineering industry. The vast knowledge acquired through different modules in this amazing curriculum always helped me to cross the border between Process Engineering and Nuclear Engineering. It is not only the curriculum that made me confident but the dedicated staff at the Department of Chemical and Process Engineering who made us logical thinkers and helped to develop our confidence to apply the knowledge in different applications.

Not like other Engineering disciplines, Chemical and Process Engineering never frame the graduates to a certain number of options, and it is not an exaggeration to say you have limitless options. The knowledge and experience gained through the program are almost applicable in any industry in the world. It provides a strong base to build one's career in their respective field of expertise

My Childhood dream to become a desalination expert to solve water crisis in Sri Lanka. So, I have selected Chemical and Process engineering to establish my career in water sector, after completing my degree in 2015, I have joined with Industrial solutions Lanka (pvt) ltd. Joining with new startup has helped me to explore more challenges and it has helped me to learn lot.

The Knowledge I have gained in Process Engineering has helped me to develop wellrefined solution to my end client. I have developed system for Sri Lanka's Leading

Milk Processing Industries, Apparel Industries, Pharmaceutical Industries, Rice Mill Industries, Electro-plating industries, Rubber Industry, Coconut based industry, Dye Processing Industry, Leather and Tanning Industry and Ink based industry etc. After Completing Training program on Designing of Advanced Water Treatment plant using Membrane Technologies at IHE Delft, I have designed and developed Sri Lanka's First Zero Liquid Discharge Facility for pharmaceutical Industry.

Fundamental given by CPE in Process engineering is key of my success, which has helped me to design and develop more 300 Industrial effluent Treatment Plants and where I treat minimum 5,000,000 m3 wastewater annually. I wish all CPE graduate to follow your passion it will leave you to your purpose.

Gayathri Liyanage (2008 batch)

Research Engineer – Industrial Technology Institute (ITI)

The chemical and process engineering of university of Moratuwa, program equipped me with knowledge and confidence to explore new horizons of academic and professional life. It is a very broad discipline which enables one to enter and sustain in numerous different fields. As for me, it opened doors for a career in product development in the apparel sector and then for an academic career with research opportunities in nanotechnology and sustainable energy generation. It also gave me the ability to work closely with international and government organizations related to environmental health and safety and sustainability, such as the Organization

for the Prohibition of Chemical Weapons (OPCW).

The friendly and supportive environment of the department helped me immensely to enhance my interpersonal, communication and team working skills which later became very beneficial for my professional career. Further the entrepreneurial and business knowledge transferred through the academic program prepared me to work and in a changing business environment. In conclusion, if someone is really into the big picture and willing to take up challenges in many different fields, this engineering branch is for you!

Amali Vithanage (2008 batch) Founder-Layashri Industries, Hokandara.

Chemical and process engineering is a vast subject among all the engineering disciplines in the world. It consists with various topics including unit operations, fluid dynamics, transport phenomena, polymers, environmental science, food and bio process etc. Acquiring knowledge about these subject areas would make us possible to showcase our abilities and talents in most of the available manufacturing fields in the industry. But somehow as we all know Sri Lanka is very much deviating from manufacturing and focusing on importing, which is a considerable threat to fresh chemical engineering graduates when it's come to job hunting. But still, it is somewhat manageable because of wide range of applications that we are thorough about during undergraduate period. However, it is a known fact that 'education is what is remaining inside you after you forget all academic stuff from your head' or in other words 'it's not about what you learn but it's all about the process of learning'. Ultimately 4 years of university period is transforming you in to a person that has the capacity of thinking new, accepting challenges and focus until you achieve targets.

In Sri Lankan context we chemical engineers have a big role to play to strengthen the manufacturing processes and do massive value addition with zero unused waste. Therefore, investing on a such production facility even in very small scale will energize Sri Lankan economy and also it will be a huge motivation to the next chemical engineering generation. As I mentioned earlier getting an employment of a company is not a massive challenge until now but there is a competition which is increasing day by day. Therefore, we as senior chemical engineers hold а responsibility on addressing that issue without getting used to the comfort zone of doing only a job.

As per my own experience female chemical engineers do have an extra difficulty in finding a job and also retaining on the job. The reason is not mainly the abilities or the performance of a lady engineer, but the narrow mindset of Sri Lankan society. As a result, female engineers might get highly demotivated in job culture. They start to feel less than a male engineer due to lack of empowerment and prohibiting of the opportunities to grow. Sometimes they get stuck with only documentation work which is even more depressing. So here I suggest it is always great to become an entrepreneur with engineering skills and knowledge rather than depending only on monthly pay cheque. Nevertheless, there is a huge risk factor accompanied when starting a business when it's come to return on investment (ROI) and payback time. Also selecting the type of business, funding, planning the

location and set up the facility, investing on energy supplies etc. are always the questions that should be answered. But engineers naturally have the ability to come up with solutions to problems also they are trained to make contacts in between fellow engineers. I can provide lots of examples for companies started from scratch with batch mate partnerships and still thriving in the industry. So, the gain of investing on such process is much more effective with time than just hanging on a job.

In conclusion, it can be said that chemical engineers do have a responsibility to initiate new manufacturing facilities or production processes to convert raw materials in to value added products, not just to support the Sri Lankan economy but to encourage fresh graduates blooming to world every year. Eventually we can retain good brains within the country and make Sri Lanka a wonderful place to live.

Chathuri Dayananda (2002 Batch) Alfa Laval Technologies AB, Sweden

Being admitted to the DCPE at UoM was a turning point in my life. It helped me to develop myself as a well-rounded professional. The program is unique, and it empowers graduates to venture into diverse career paths.

Among many other skills, I honed the skill to think critically during the program. This helped me a lot to thrive my first career in the IT industry for seven years. After, I've got selected for a competitive engineering M.Sc. program in Europe. I am confident that the CPE program and the grades on my resume carried a lot of weight to help me in the selection process. Currently, I am employed in an innovative company that invented the first dairy centrifugal separator. The vast experience and exposure I'm gaining there in different roles is a dream come true.

CPE graduates are well equipped to take on any challenge anywhere in the world. And the world is full of opportunities. It's up to us to seize them and discover new dimensions in our professional lives.

Bandara Dissanayake (2001/02 batch) Principal Scientist at Procter & Gamble, USA

Accomplishing my childhood dream, I graduated from DCPE in 2005 as a Chemical Engineer. The depth and breadth of the curriculum helped me develop numerous skills and technical curiosity to explore untapped territories in Science and Technology. After gaining industrial and academic exposure, I moved to UK for my PhD in Chemical Engineering. After my post-doc, I joined P&G in Japan where I had the opportunity to apply all my expertise in unit operations and transport phenomena in developing manufacturing processes for cosmetics. After spending nearly a decade in Chemical Engineering as a student, Engineer and Scientist, I decided to learn something different.

I am now working as a lead Skin Scientist, leveraging image analytics and data science in redefining skin biology to develop new skin care solutions. My passion has always been to learn and master - which led me to embark on an exciting career journey - at least- so far.

World is changing faster than ever so are the skills for future. My advice is to learn and

excel in digital skills such as modelling and simulation, data science, coding to develop creative solutions to complex problems in the digital era. 'Follow your passion, embrace changes and never stop learnings'

Deshai Botheju 1997/98 Batch Project Discipline Lead (HSE Management and Design), Wood Group

Inspired by my beloved father who was "a backyard inventor" of his own style, I got my first footholds in technology right at the start. I was then able to spearhead my career through obtaining the bachelor's degree in Chemical and Process Engineering (CPE), while being awarded as the Best CPE Graduand (2002) at University of Moratuwa. After completing two master's degrees as well, I obtained my doctoral degree from the Norwegian University of Science and Technology (NTNU).

After working as a Postdoctoral Researcher and as an Assistant Professor for several years at USN, I moved into the Oil & Gas industry by joining Agility Group Norway in 2012 and then continued to stay in the industry as a Senior Engineering Consultant and as a Discipline Lead within the arena of Process Safety Design, Technical Safety, and Environmental Management.

I found CPE as an inspiring field that not only aided my own professional career but also empowered me to serve the society in a broader manner via knowledge dissemination and advocating scientific methodology. I highly encourage all CPE graduates to bestow part of your professional life to serve the society as thought-leaders and influencers as you are well qualified for that role.

THE JOURNEY OF DCPE

The Department of Chemical Engineering, being established by gazette notification on 15th February 1972 at Katubedda Campus of University of Ceylon, had its roots in the Junior Technical Officer's course conducted by the Maradana Technical College. Initially the degree program was termed as Chemical Engineering and Fuel Science, offering the undergraduates with the degree of Bachelor of Applied Science (BASc.), which altered into Bachelor of Science of Engineering in 1980.

Being initiated with only 8 students per batch, the Department of Chemical and Process Engineering has been progressed to offer the students with the undergraduate degree program in Chemical and Process Engineering for 80 students per batch of each intake to the University of Moratuwa.

Currently, the undergraduate course curriculum has expanded with several minor specialization fields for Environmental Engineering, Energy Engineering, Food and Bioengineering, Polymer Engineering and Petroleum Engineering in order to equip the students with necessary knowledge required for a prospective professional to understand and appreciate the role of a Chemical and Process Engineer in an economy for the sustainable growth.

The continuous growth of well-qualified human resource factor, well-structured course curriculum, well-equipped and wellfunctioning laboratory facilities, and other supporting resources ensures the improving standard of the internationally recognized programs delivering best professionals.

The DCPE is also improving the bond with the industry during its journey. The internships offered for the undergraduates, the huge career opportunities available for the fresh graduates, the abundance of resource persons for mentoring programs, the facilitators for field visits, the established incubators at the department by the pillars in the industry, and the huge amount of consultancy services required from the department stand as proof for the success of the DCPE.

1972	Establishment of the Department of Chemical Engineering at the Katubedda			
	Campus of University of Ceylon.			
	 Inauguration of the Department of Chemical Engineering under the Applied 			
	Science Faculty offering the Degree of Bachelor of Applied Science (B.A.Sc.)			
	8 students per batch only were offered with the Degree.			
1976	• Graduation of the 1 st batch of students from the department.			
1981	 Introduction of the Bachelor of Science of Engineering (B.Sc. Eng.) Degree. 			
	• The students under E II category were given the opportunity to select Chemical,			
	Material or Mining Engineering fields depending on their 1 st year performance in			
	which common subjects were offered to all engineering disciplines.			
1986	 Introduction of M.Sc. course in Polymer Technology as a full-time course. 			

STUDENT HANDBOOK 2020 INTAKE

	 Introduction of Polymer Engineering subject to the Chemical Engineering
1990	undergraduate curriculum for Final Part III.
	 Increment of the student intake up to 15 students per batch.
1991	 Introduction of the subject 'Unit Operation' to the Part I Chemical Engineering
1771	Curriculum.
1992	 Inauguration of Chemical Engineering Society.
	• Conducting the three-day open day program "Making the future happen" at
	department premises and the first issue of 'Chemunique' magazine.
1993	• Conversion of the fulltime M.Sc. Course in Polymer Technology to a part time
	course.
	 Introduction of the optional subjects Environmental Engineering, Biochemical
	Engineering and Food Process Engineering to the Chemical Engineering
1994	curriculum.
	 Increment of the student intake up to 20 students per batch.
	 Alteration of the title of the Chemical Engineering Department to Department of
1998	Chemical and Process Engineering.
1999	 Increment of the student intake up to 30 students per batch.
	 Initiation of student intake under a common 'Engineering' category eliminating
	the E II stream.
	 Conversion of the course curriculum to semester system from session
	examinations systems.
2000	• Offering of specialization in the field of Chemical and Process Engineering for
2000	chosen undergraduates by their Level I academic performance.
	 Introduction of four fields of minor specialization (presently known as 'focus
	areas') namely, Food & Biochemical Engineering, Environmental Engineering,
	Energy Engineering and Polymer Engineering.
	 Increment of the student intake up to 50 students per batch.
2001	 Initiation of master's program in Chemical and Process Engineering with a first
2001	batch of 09 students.
2004	 Inauguration of Chemical Engineering Student Society (ChESS).
2004	 Revision of the course curriculum.
	 Re-establishment of the Prof. Hubert Silva Memorial Resource Centre
2005	 Received the IRQUE fund.
2005	• Agreement with Hayleys Group to sponsor the annual gold medal for the best
	Chemical and Process Engineering Student.
2006	 Foundation stone was laid for the new Chemical Engineering Centre.
2000	 Obtaining new equipment under IRQUE grants.
	 Initiation of the M.Sc. program in Sustainable Process Development as a part-time
	course with the first batch of 12 students in collaboration with Telemark
2007	University College, Norway.
2007	• Initiation of the offering of M.Sc. scholarships for Chemical and Process
	Engineering students in Norway.

STUDENT HANDBOOK 2020 INTAKE

	 Graduation of first Ph.D. holder. 				
	 Signing of agreements with NCPC and Cargills. 				
	 Declaring the Opening of Chemical and Process Engineering Centre. 				
2008	Inauguration of scholarships Program in Chemical and Process Engineering for				
	students who have economic difficulties.				
2009	 Establishment of first food and process development incubator in Sri Lanka. 				
2009	 Establishment of a partnership with Polipto Company – petrol from waste plastics. 				
	Increment of the student intake further up to 80 students per batch.				
	• Chosen undergraduates were offered with field specialization in Chemical and				
	Process Engineering from Semester II onwards.				
2010	• Combination of minor specializations of Energy Engineering and Environmental				
	Engineering reducing the minor specializations down to three.				
	 Received accreditation by the IChemE for the undergraduate degree program. 				
	 Received accreditation by the IESL for the undergraduate degree program. 				
2011	 Establishment of SIL-UOM rubber products and process development incubator 				
2011	at the department.				
2014	Initial student credit transfer program with 5 undergraduate students from				
2014	Telemark University College, Norway.				
2017	 Introduction of Petroleum Engineering focus area. 				
	 Signed an MoU with East China University of Science and Technology to boost 				
2018	the academic collaborations between two institutions.				
2010	Signed an agreement for Europe Sri Lanka capacity building in energy circular				
	economy "EUSL Energy" online digital joint master's degree program.				
	 Conversion of the existing M.Sc. course in Sustainable Process Development into 				
	M.Sc. course in Sustainable Process Engineering with a major curriculum revision				
2019	by adopting the latest subject areas related to sustainable process industries.				
2019	 Signed an agreement for a joint study program and student-staff exchange program 				
	with Sirindhorn International Institute of Technology, Thammasat University				
	 Initiation Research for Undergraduates (R4U) club. 				
2020	 Establishment of 24/7 laboratory. 				

ACADEMIC STAFF MEMBERS

The well-qualified and dynamic group of academic staff of the department is the foremost treasure of the department who professionals builds the from the undergraduate's ready for challenges beyond university life. They provide the students with theoretical, technological and industrial strengths supporting the students' outlook towards industry. The academic staff members of the DCPE always strive to develop the department as a place of excellence for the students.

Having a high recognition among the academic community for their contributions towards the betterment of the field, as educators of the chemical and process engineering discipline, the staff members are easily approachable and are ever willing to address student issues, whatever they may be.

HEAD OF THE DEPARTMENT

 Prof. (Mrs.) Shantha Egodage

 B.Sc. Eng. (Moratuwa), M.Sc. (Moratuwa), M.Phil. (Moratuwa),

 Ph.D. (Loughborough), MIE (SL), C.Eng

 E -mail: head-cpe@uom.lk , segodage@uom.lk

 Image: Phone: +94 112 640 051

 Ext: 4101/4120

 Direct: +94 112 640 051

EMERITUS PROFESSOR

Eng. Prof. Anul Perera

DSc (RU-USA), B.Sc.(Eng), IntPE (SL), PEng (SL), C. Eng, FIE (SL), MIAChE (USA) E -mail: <u>anul@uom.lk</u>

SENIOR PROFESSORS

Snr. Prof. Ajith De Alwis

B.Sc. Eng. (Moratuwa), Ph.D. (Cambridge), MBA (PIM-USJP), MAIChe (USA), AMIChemE (UK), AMIESL, FNASSL E -mail: <u>ajith@uom.lk</u> S in S Phone: +94 112 640 051 Ext: 4118

Snr. Prof. (Mrs.) Padma Amarasinghe

B.Sc. Eng.(Moratuwa), M.Sc, Ph.D. (UMIST UK), MIE (SL), C. Eng E -mail: <u>padma@uom.lk</u> S Phone: +94 112 640 051 Ext :4116

PROFESSORS

Prof. Jagath Premachandra B. Sc. (Col.), M.Sc. (Sri J'Pura), Ph.D. (Cincinnati, USA) E -mail: jagath@uom.lk S Phone: +94 112 640 051 Ext :4102

Prof. Shantha Amarasinghe B.Sc. Eng. (Moratuwa), Ph.D. (Cambridge), MIE (SL), C. Eng E -mail: <u>adusa2@uom.lk</u> S Phone: +94 112 640 051 Ext: 4104

Prof. P. G. Ratnasiri B.Sc.Eng. (Moratuwa), M.Sc. (UMIST), Ph.D. (NTNU) Norway E- mail: ratnasiri@uom.lk

Phone: +94 112 640 051 Ext: 4121

Prof. Mahinsasa Narayana C.Eng, MIE (SL), B.Sc. (Eng), MPhil. (Eng.), Ph.D.(UK) E-mail: mahinsasa@uom.lk Import Phone: +94 112 640 051 Ext: 4107

Prof. Shantha Walpalage B.Sc. Eng. (Moratuwa), Ph.D. (UK), MIE (SL), C. Eng E -mail: <u>shanthaw@uom.lk</u> S Phone: +94 112 640 051 Ext: 4105

Prof. (Mrs.) Sanja Gunawardena

Dr. (Ms) Manisha Gunasekera

MIE (SL), C. Eng

B.Sc. Eng. (Moratuwa), Ph.D. (Birmingham), MIE (SL), C. Eng E -mail: sanjag@uom.lk 9 in Phone: +94 112 640 051 Ext: 4106

B.Sc. Eng. (Moratuwa), M.Eng. (Moratuwa), Ph.D. (Loughborough),

SENIOR LECTURERS

	Senior Lecturer Grade I E -mail: <u>manisha@uom.lk</u> S Phone: +94 112 640 051 Ext: 4109
er see	Dr. (Mrs.) Thilini U. Ariyadasa B.Sc. (Hons) (University of Delhi), M.Sc. (Peradeniya), Ph.D. (ICGEB – New Delhi Component) Senior Lecturer Grade II E-mail: <u>thilini@uom.lk</u> Thom: +94 112 640 051 Ext: 4619
	Dr. (Mrs.) Duleeka Gunarathne B.Sc. Eng. (Moratuwa), MSc., Ph.D.(KTH Sweden), AMIESL Senior Lecturer Grade II E-mail: duleekas@uom.lk Solution Phone: +94 112 640 051 Ext: 4619
	Dr. Thushara Subasinghe B.Sc Eng. Hons (UoM, Sri Lanka), M.Sc (ZJU, China), Ph.D (ZJU, China), AMIESL Senior Lecturer Grade II Email: thusharas@uom.lk in in thusharas@uom.lk Phone:+94 112 640 051 Ext: 4119
	Dr. Mahinsasa Rathnayake B.Sc. Eng. (Ruhuna, Sri Lanka), M.Sc (Thammasat, Thailand), Ph.D (Thammasat, Thailand), AMIESL, AMECSL Senior Lecturer Grade II E-mail: mratnayake@uom.lk

Ext: 4607

in Phone: +94 112 640 051

9

Dr. (Mrs.) Tharushi Keerthisinghe

B.Sc. Eng. (Moratuwa), Ph.D. (NTU, Singapore),

Dr. (Mrs.) Dilhara Sethunga

Lecturer (un-confirmed) E -mail: dilharap@uom.lk

in

B.Sc. Eng. (Moratuwa), Ph.D. (NTU, Singapore), AMIESL Senior Lecturer Grade II (on contract) E -mail: <u>tharushik@uom.lk</u>

9

LECTURER UN-CONFIRMED

LECTURERS

Ms. Peshalya Kothalawala M. Sc. (Thammasat, Thailand), B. Sc. Eng. (Moratuwa), AMIESL Lecturer E-mail: <u>peshalyak@uom.lk</u>

Mr. Poorna Vidanage B. Sc. Eng. (Moratuwa), AMIESL Lecturer (Probationary) E-mail: poornaw@uom.lk

Ms. Madhurika Geethani B. Sc. Eng. (Peradeniya), AMIESL Lecturer (Probationary) E-mail: <u>madhurikag@uom.lk</u>

Ms. Sajani Piyatilleke B. Sc. Eng. (Moratuwa) Lecturer (On Contract) E-mail: <u>sajanis@uom.lk</u>

Ms. Ronali Fernando B. Sc. Eng. (Moratuwa), AMIESL Lecturer (On Contract) E-mail: <u>ronalif@uom.lk</u>

Ms. Sanduni Kavindi B. Sc. Eng. (Moratuwa) Lecturer (On Contract) E-mail: <u>kavindis@uom.lk</u>

ACADEMIC SUPPORT STAFF

Mr. Chinthaka Narangoda B. Sc. (Kelaniya), P. G. Dip. in IT (Moratuwa) System Analyst Grade II Ext: 4618

Mrs. Dinusha Martino B. Sc. (NS) (OUSL), M. Sc. (Thailand) Analytical Chemist Ext: 4613

TECHNICAL STAFF

Mrs. H. B. R. Sajeewani Staff Technical Officer – Grade I Ext: 4645

Mrs. Indika Athukorala Staff Technical Officer – Grade I Ext: 4160/4625

Mr. B. H. P. Mahendra Staff Technical Officer – Grade I Ext: 4614

Ms. Ishara Gayani NDT (Moratuwa) Technical Officer Grade II seg A Ext: 4150

Mrs. Shameera De Silva Technical Officer Grade II seg A Ext: 4644

Ms. Dineshi Rodrigo Technical Officer Grade II seg A Ext: 4617

Mr. Dinuka Wijegunarathne Technical Officer Grade II seg A Ext: 4659

Ms. Harshani Hettiarachchi NDT (Moratuwa) Technical Officer Grade II seg A Ext: 4100

Mrs. Hasini Gunarathna NDT (Moratuwa) Technical Officer Grade II seg A Ext: 4100

TECHNICAL ASSISTANCE STAFF

Mr. B. A. R. D. Abeywardena Boiler Operator Grade I Ext: 4620

Mr. Asanka Kumara Lab Attendant (H.G.) Ext: 4626/4150

Mr. S. M. R. N. Dhammika Lab Attendant (L.G.) Ext: 4606

Mr. D. S. Dayananda Lab Attendant (L.G.) Ext: 4156

Mr. B. Karunathilaka Lab Attendant (L.G.) Ext: 4625

Mr. Gihan Peiris Lab Attendant (L.G.) Ext: 4160

Mr. Viraj Somarathna Lab Attendant (L.G.) Ext: 4614

Mr. Nuwan Gunasekara Lab Attendant (L.G.) Ext: 4160

OFFICE ASSISTANCE STAFF

Ms. Dilrukshi Ranasinghe Clerk Grade II Ext: 4100

Mrs. Thushari Gunawardana Staff Management Assistant Ext: 4100

Mr. Madushan Wijayarathna Office Assistant Ext: 4100

UNDERGRADUATE DEGREE PROGRAM

Graduate Program Outcomes (POs) Profile

- **1. Engineering Knowledge:** Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to solve complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **3. Design/ development of solutions:** Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- **4. Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- **5. Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
- 6. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- 7. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **9. Individual and Teamwork:** Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12.** Lifelong learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broad context of technological change.

Program Educational Objectives

- 1. To produce graduates who pursue challenging careers, with skills to analyze and provide solutions in energy, environmental, food and bio, polymer and other related industries and emerging areas with an appreciation of the role of Chemical Engineering in the society.
- 2. To produce graduates who pursue advanced studies in Chemical Engineering and related disciplines.
- 3. To create engineering leaders with a global focus, displaying entrepreneurship skills.

Students are selected to follow the B.Sc. in Chemical and Process Engineering (CPE) course based on their performance in semester I examination and their individual preferences. Until 2009, student intake was restricted to 50, which has been increased to 80 in 2010. This was further expanded to 90 in 2013. Currently, the DCPE offers five focus areas after completion of their sixth semester, namely;

- Environmental Engineering
- Food and Bioengineering
- Polymer Engineering
- Petroleum Engineering
- Energy Engineering

Students have the option of following the Chemical and Process Engineering degree program by selecting subjects without any focus area/minor specialization.

The Department degree program is regularly being revised and renovated under a collaborative effort by the academic and industrial personnel with the objective of creating highly skilled graduates who meet the needs and demands in both the industry and the academia. Students have the liberty of approaching the department professionals at any time to acquire necessary knowledge and skills during their stay in the department.

Graduation Credit Requirement

Semester	GPA Credits Normal	Non-GPA Credits
Semester 1	15	-
Semester 2	20	-
Semester 3	20	-
Semester 4	22	-
Semester 5	23	-
Industrial Training	-	6
Semester 6	9	
Semester 7	13	-
Semester 8	10	-
Total	132	6

Total credit requirement for the Specialization

Total credit requirement for the Graduation

Total credit requirement for the Specialization	138
Faculty/Specialization Electives beyond the specialization requirements [refer faculty electives tables (Page 41-46)]*	12
TOTAL CREDIT REQUIREMENT FOR GRADUATION	150

Faculty Academic Committee Coordinator

Dr. (Mrs) Duleeka Gunarathne Email – eac-ch@uom.lk

Semester Coordinators

Academic level	Coordinator	Email address		
Semester 1 (Group Coordinator)	Ms. Peshalya Kothalawala	peshalyak@uom.lk		
Semester 2	Mr. Poorna Vidanage	poornaw@uom.lk		
Semester 3	Dr. (Ms.) Manisha Gunasekera	manisha@uom.lk		
Semester 4	Ms. Madhurika Geethani	madhurikag@uom.lk		
Semester 5	Dr. (Mrs.) Duleeka Gunarathne	duleekas@uom.lk		
Industrial Training	Dr. Mahinsasa Rathnayake	mratnayake@uom.lk		
Semester 6	Ms. Peshalya Kothalawala	peshalyak@uom.lk		
Semester 7	Dr. Thushara Subasinghe	thusharas@uom.lk		
Semester 8	Prof. Mahinsasa Narayana	mahinsasa@uom.lk		

Teaching and Learning

The knowledge is transferred to the students through a range of learning and teaching activities to fulfil the course objectives. Clearly defined assessment methods are used to measure student's success in meeting course objectives. Module outline consisting subject coordinator, lecturers, pre-requisites, course objective, learning outcome, tentative course outline. method of grading. recommended textbooks selected and references for each module is distributed to students at the first lecture of the module.

With the recently established outcome-based education system (OBE), traditional lecturebased teaching and learning system have been diverted to a more student-centred system. Modules are taught through a combination of lectures, practical classes, tutorials, discussions, question and answer quizzes and sessions, take-home assignments. These methods are clearly defined for each module with the learning outcomes of the individual subjects and have been modified such that the student is in an active learning process with more classroom interactions. Subject-specific theories, fundamentals and concepts are delivered through lectures, aided by one or combination of: black/white board. overhead projector, multimedia, printed lecture notes and many other learning activities. Students learn by listening, seeing, taking down notes and by discussion. Lecture notes and additional resources are uploaded in Learning Management System (LMS), which is the latest IT based learning environment in University of Moratuwa. Students can access LMS through the following web address.

Assess to LMS URL: <u>https://lms.uom.lk</u>

Practical classes are carried out in groups, 2-5 students per group, under the guidance of a lecturer and/or an instructor to develop data recording, calculation, analysis and interpretation skills. Tutorials encourage student-centred learning towards the application of theories to solve chemical engineering problems. Model answers for the tutorials are provided for self-learning.

Assignments, case studies and literature surveys develop a range of skills such as information gathering, identifying lessons and time management. Group or individual activities are introduced to enhance the student interaction with the classroom while maintaining a lively learning process. Group or individual presentations at the end of selected assignments are a means of developing presentation skills from the lecturer's and the colleagues' feedback.

Industrial visits are arranged to enunciate the practical applications of theories that are taught during the degree program.

Six months industrial training period at the end Semester 5 enables students to experience in-plant work in an area of their preference within the CPE program. The students develop management skills in addition to the chemical engineering disciplines. Continuous assessment of the training progress is done under the guidance of the Director of the Department of Industrial Training. A student guide for training and training report preparation is

STUDENT HANDBOOK 2020 INTAKE

available for the student. An E-portal containing information for students which can be accessed through Departmental intranet is in operation. This facility is expected to enhance student's self-learning abilities.

Research is also an integral component of the pathway of becoming a chemical and process engineer. In the semester 6, students will be divided into groups of 2 or 3 and they will work on the undergraduate research project with an academic staff member as a supervisor. The students will have the invaluable opportunity to increase their research output by publishing their findings in well-reputed journals and research conferences.

The engineering product design experience is a vital element in engineering education. Students are encouraged to develop a prototype of the designed product. enhancing group learning and innovation. The final year design project allows students to apply their gathered knowledge during the first three years in the university to conceptually design a process plant. The final year comprehensive design project consists of a common component where a group of students works on the literature survey, process development and the material and energy balance of an industrial scale plant and an individual component where each student does the detailed design of a major unit in the process.

Examination and Assessment Strategy:

The performance of each student is evaluated solely by either continuous assessments (CA) or a combination of continuous assessments and end of semester examinations (WE).

Continuous Assessments Includes:

- Course work
- Assignments
- Quizzes
- Viva
- Mid-Semester exams
- Presentations and
- Reports.

All candidates should obtain at least 35% from each of CA and WE components to pass a module. This is a university requirement applicable to all modules. The completed assignments must be submitted to the lecturer on the dates of submission as detailed in the assignments. Late submissions will be compensated with a reduction of marks.

Students having prolonged illnesses may provide medical reports through the Medical Officer of the university or an equally qualified doctor. Arrangements can be made through negotiation with the lecturer in person to submit assignments. Students having disabilities are encouraged to discuss with the semester coordinates and subject coordinators to make necessary arrangements.

Industrial Training is coordinated and assessed jointly by the DCPE, Industrial training division of UOM and NAITA. The students are partly assessed while undergoing training and any improvement needed to obtain better training is encouraged at this instance. The student is assessed based on the report submitted at the end, the diary maintained during the training period and a viva assessment.

The final year Comprehensive Design Projects and Research Projects are assessed by the interim reports, final report, presentations, and viva voce examinations. The marks are displayed on the notice board/LMS and the students are given a chance to apply for re-correction. The recorrection application is also allowed for continuous assessment results displayed on the notice board/LMS before the end of the semester.

Depending on the credits earned by the student for each module, an Overall Grade Point Average (GPA) is calculated. Each student is awarded a class at the completion of all the graduation requirements within five academic years.

A documentation manual consists of curriculum and syllabi, assessment methods and other relevant information on undergraduate program is available in the department.

Curriculum

The following description is followed.

C - Core Modules

E - Elective Modules

Semester 1		S	pecializ	ation re	equiren	ent	15	.0				
			Hours/Week		Cre	dits	Norm		Norm		Evaluation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%		
CE1023	Fluid Mechanics	С	2	2/4	2.0				20	80		
CS1033	Programming Fundamentals	С	2	2	2.0				20	80		
EE1040	Electrical Fundamentals	С	2	2/4	3.0				20	80		
MA1014	Mathematics	С	5/2	1	3.0		15.0		20	80		
ME1033	Mechanics	С	2	2/4	2.0				20	80		
MT1023	Properties of Materials	С	2	2/4	2.0				20	80		
EL1030	Language Skills Enhancement [S1 & S2]	С	0	2	1.0				100	0		
]	Fotal f	for sem	ester 1	15.0	0.0	15.0	0.0				
Semester 2		S	pecializ	ation re	equiren	lent	20	.0				
CH1051	Engineering Thermodynamics	С	2	2	3.0				40	60		
CH1044	Fluid Dynamics	С	3	2	4.0				40	60		
CH1071	Chemistry and Green Chemistry for Process Engineers	С	2	2	3.0		18.0		40	60		
CH1061	Chemical and Bioprocess Engineering Principles	С	3	2	4.0				40	60		
MA1024	Methods of Mathematics	С	5/2	1	3.0				30	70		
EL1030	Language Skills Enhancement [S1 & S2]	С	0	2	1.0				100	0		
HM-1	Humanities I	Е	2	0	2.0		2.0		100	0		
]	Fotal f	for sem	ester 2	20.0	0.0	20.0	0				

STUDENT HANDBOOK

2020 INTAKE

Semester 3		S	pecializ	ation re	equiren	ent	20.0				
			Hours	Hours/Week		Credits		Norm		Evaluation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%	
CH2631	Chemical Thermodynamics	С	2	2	3.0		20.0		40	60	
CH2015	Heat and Mass Transfer	С	3	2	4.0				40	60	
CH2160	Bioprocess Engineering and Practices	С	2	2	3.0				40	60	
CH2170	Laboratory Practices I	С	0	6	3.0				100	0	
MA2014	Differential Equations	C	2	0	2.0				30	70	
MA2034	Linear Algebra	С	2	0	2.0				30	70	
EN1803	Basic Electronics for Engineering Applications	С	2	2	3.0				30	70	
		Fotal f	for sem	ester 3	20.0	0.0	20.0	0.0			
Semester 4		Specialization re			equirem	lent	22.0				
CH2151	Particulate Systems	С	3	2	4.0				40	60	
CH2180	Separation Processes	С	3	4	5.0		20.0		40	60	
CH4501	Chemical Kinetics and Reactor Design	С	3	2	4.0				40	60	
CH2210	Materials for Engineering Applications	С	2	2	3.0				30	70	
CH2270	Laboratory Practices II	С	0	4	2.0				100	0	
MA3024	Numerical Methods	С	2	0	2.0				30	70	
HM-2	Humanities II	Е	2	0	2.0		2.0		100	0	
	for sem	ester 4	22.0	0.0	22.0	0					

STUDENT HANDBOOK

2020 INTAKE

Semester 5		Specialization requirement					23.0			
			Hours/Week		Credits		Norm		Evaluation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA %	WE%
CH4045	Process Dynamics and Control	С	2	2	3.0		21		40	60
CH3045	Plant Safety, Health and Environment	С	7/2	1	4.0				30	70
CH3034	Process Equipment Design	С	3	2	4.0				40	60
CH3055	Energy Systems Engineering	С	2	2	3.0				40	60
CH3150	Chemical Process Synthesis and Integration	С	2	2	3.0				40	60
CH3880	Engineer and Society [S5 & S6	С	0	2	1.0				100	0
MN3043	Business Economics and Financial Accounting	С	3	0	3.0				30	70
MA3014	Applied Statistics	Е	2	0	2.0		2		30	70
MA2024	Calculus	Е	2	0	2.0				30	70
MA3030	Operational Research	Е	2	0	2.0				30	70
То			tal for semester 5			0.0	23.0	0.0		
Industrial Training		Sp	ecializa	ntion 1	require	ment	6.0			
CH3994	Industrial Training	С				6.0		6.0	100	0
	dustri	ial Trai	ning		6.0	0.0	6.0			
Semester 6		Sp	ecializa	ntion 1	require	ment	9.0			
EL3820	Technical Report Writing and Presentation Skills	С	1	4	3.0		9.0		100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0				100	0
CH3170	Laboratory Practices III	С	0	6	3.0				100	0
CH3880	Engineer and Society [S5 & S6]	С	1	2	2.0				100	0
Tot			r semes	ter 6	9.0	0.0	9.0	0.0		

STUDENT HANDBOOK

2020 INTAKE

	Semester 7	S	pecializat	tion re	equirem	quirement		13.0		
			Hours/V	Veek	Cre	dits	No	rm	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA %	WE%
CH4016	Comprehensive Design Project I	С	0	8	4.0				100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0		7.0		100	0
MN4023	Engineering Economics	С	2	0	2.0				30	70
CH4120	Biofuels and Biorefineries	Е	2	2	3.0				40	60
CH4130	Process Optimization	Е	2	2	3.0				40	60
CH4140	Biotechnology	Е	2	2	3.0		3.0		40	60
CH4160	Process Chemicals Management	Е	2	2	3.0				40	60
CH4371	Petroleum Trade and Economics	Е	2	2	3.0				30	70
CH4410	Polymeric Materials	Е	2	2	3.0				30	70
CH4026	Process Modelling and Simulation	Е	2	2	3.0				40	60
CH4420	Waste Minimization and Resources Recovery	Е	2	2	3.0		3.0		30	70
CH4430	Industrial Chemical Manufacturing Processes	Е	2	2	3.0				40	60
CH4235	Polymer Processing Operations	Е	2	2	3.0				30	70
CH3720	Waste to Energy	Е	2	2	3.0				40	60
CH3253	Environmental Bioengineering	Е	2	2	3.0				30	70
CH4440	Petrochemical Process Operations	Е	2	2	3.0				30	70
CH4285	Food Safety and Hygienic Plant Design	E	2	2	3.0				40	60
	Total for semester 7			ter 7	49.0	0.0	13.0	0.0		

STUDENT HANDBOOK

2020 INTAKE

:	Semester 8	Spe	ecializ	ation	requirem	ent	10.	0		
			-	urs eek	Cred	lits	Nor	m	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH4035	Comprehensive Design Project II	С	0	10	5.0				100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0		10.0		100	0
MN4151	Project Management	С	2	0	2.0				30	70
MN4113	Production and Operations Management	С	2	0	2.0				30	70
CH4275	Polymer Products Manufacturing Technologies	Е	2	2	3.0				40	60
CH4742	Polymer Products and Tool Design	Е	2	2	3.0				40	60
CH4450	Energy Storage Systems	Е	2	2	3.0				40	60
CH4255	Renewable Energy	Е	2	2	3.0				40	60
CH4651	Combustion Technology	Е	2	2	3.0				40	60
CH4215	Environmental Engineering and Management	Е	2	2	3.0				30	70
CH4460	Sustainable Process Technology	Е	2	2	3.0				30	70
CH4351	Up-stream Oil and Gas Operations	Е	2	2	3.0				30	70
CH4381	Petroleum Refining Operations	Е	2	2	3.0				30	70
CH4294	Bioengineering	Е	2	2	3.0				40	60
CH4691	Food Process Engineering	Е	2	2	3.0				40	60
	Total for sen		semest	ter 8	43.0	0.0	10.0	0.0		
		Gra	nd to	tal	205.0	6.0	132.0	6.0		

Focus Area

				urs/ eek	Cre	dits	Evalu	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits required
Focus area	-Polymer Engineering									
CH4410	Polymeric Materials	С	2	2	3		30	70	7	
CH4235	Polymer Processing Operations	С	2	2	3		30	70	7	
CH4275	Polymer Products Manufacturing Technologies	С	2	2	3		40	60	8	12
CH4742	Polymer Products and Tool Design	С	2	2	3		40	60	8	
Focus area	- Food and Bioengineering						-	_		
CH4140	Biotechnology	С	2	2	3		40	60	7	
CH4285	Food Safety and Hygienic Plant Design	С	2	2	3		40	60	7	12
CH4294	Bioengineering	С	2	2	3		40	60	8	
CH4691	Food Process Engineering	С	2	2	3		40	60	8	
Focus area	- Environmental Engineering									
CH4420	Waste Minimization and Resources Recovery	С	2	2	3		30	70	7	
CH3253	Environmental Bioengineering	С	2	2	3		30	70	7	10
CH4215	Environmental Engineering and Management	С	2	2	3		30	70	8	12
CH4460	Sustainable Process Technology	С	2	2	3		30	70	8	
Focus area	- Petroleum Engineering									
CH4371	Petroleum Trade and Economics	С	2	2	3		30	70	7	
CH4440	Petrochemical Process Operations	C	2	2	3		30	70	7	12
CH4351	Up-stream Oil and Gas Operations	С	2	2	3		30	70	8	
CH4381	Petroleum Refining Operations	С	2	2	3		30	70	8	
Focus area	- Energy Engineering									
CH4120	Biofuels and Biorefineries	С	2	2	3		40	60	7	
CH3720	Waste to Energy	С	2	2	3		40	60	7	9
CH4450	Energy Storage Systems	С	2	2	3		40	60	7	
CH4255	Renewable Energy	Е	2	2	3		40	60	8	3
CH4651	Combustion Technology	Е	2	2	3		40	60	8	c

Minors

Students following the Chemical and Process Engineering program can obtain minors in by fulfilling following subject requirements.

			Hours/ Week		Credits		Evaluation			ired
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits required
EL2410	Introduction to Literary Criticism	Е	3		3.0		100		3	3
EL2420	Introduction to Poetry and Drama	Е	3		3.0		100		4	
EL3410	Contemporary South Asian Writing	Е	3		3.0		100		5	9
EL4410	Literature and Translation	Е	3		3.0		100		7	9
EL4420	Science Fiction: Cyborgs and Dystopia	Е	3		3.0		100		8	
Total 12									12	

Minor in English Literature

Minor in English for Academic and Professional Purposes

				Hours/ Week		lits	Evalua	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits required
EL2510	Academic Writing for Engineering Studies	Е	3		3.0		100		3	
EL2520	Technical Report Writing for Engineering Studies	Е	3		3.0		100		4	
EL3510	Professional Communication for Engineering Contexts	Е	3		3.0		100		5	12
EL4510	Research Communication for Engineering Studies	Е	3		3.0		100		7	
EL4520	Journalism and Journalistic Writing	Е	3		3.0		100		8	
Total										12

Minor in Mathematics

			-	urs/ eek	Cred	lits	Eva	luation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits required
MA2014	Differential Equations	С	2		2.0		30	70	3	2
MA2024	Calculus	С	2		2.0		30	70	3,5	2
MA2034	Linear Algebra	С	2		2.0		30	70	3,4	2
MA3014	Applied Statistics	С	2		2.0		30	70	3,4,5	2
MA3024	Numerical Methods	С	2		2.0		30	70	3,4,5	2
MA4014	Linear Models and Multivariate Statistics	E	3		3.0		30	70	7,8	
MA4090	Mathematical Statistics	Е	3		3.0		30	70	7,8	
MA4034	Time Series and Stochastic Process	Е	3		3.0		30	70	7,8	3
MA4000	Experimental Design and Quality Control	Е	3		3.0		30	70	7,8	
MA4110	Finite Element Analysis	Е	3		3.0		30	70	7,8	
MA4120	Advanced Differential Equations	Е	3		3.0		30	70	7,8	
MA4130	Optimization	Е	3		3.0		30	70	7,8	
MA4144	Neural Networks and Fuzzy Logic	Е	3		3.0		30	70	7,8	
MA4150	Financial Mathematics	Е	3		3.0		30	70	7,8	
MA4160	Advanced Operational Research	Е	3		3.0		30	70	7,8	3
MA4210	Mathematical Analysis and Special Functions	Е	3		3.0		30	70	7,8	
MA4220	Topics in Algebra and Topology	Е	3		3.0		30	70	7,8	
MA4230	Number Theory and Cryptography	Е	3		3.0		30	70	7,8	
MA4240	Mathematical Methods in Theoretical Physics	Е	3		3.0		30	70	7,8	
		То	tal							16

Minor in Mathematics: A minor in mathematics is awarded if a student meets the following minimum requirements:

- MA2014, MA2024, MA2034, MA3014 and MA3024
- At least one module from MA40xx (Statistics) and at least one module from MA41xx or MA42xx (Mathematics)

Minor in Entrepreneurship

			Hou We		Crea	lits	Evalu	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits required
MN2020	Entrepreneurship Theory	С	3		3.0		50	50	2	3
MN3021	Entrepreneurship Business Basics	С	3		3.0		50	50	4	3
MN3011	Multidisciplinary Design, Innovation and Venture Creation	С	2		2.0		50	50	5	2
MN4011	Business Plan Development	С	2		2.0		40	60	8	2
MN3053	Industrial Management and Marketing	Е	3		3.0		30	70	5	
MN3043	Business Economics and Financial Accounting	Е	3		3.0		30	70	5	2
MN4023	Engineering Economics	Е	2		2.0		30	70	7	_
MN4093	Management Skills Development	Е	2		2.0		30	70	8	
		To	tal							12

				Hours/ Week		Credits		uation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%	Semester	Credits required
EN3150	Pattern Recognition	С	2	2	3.0		70	30	5	
EN3330	Introduction to Engineering Optimization	С	2	2	3.0		70	30	6	6
EN4640	Statistical Signal Processing	Е	2	2	3.0		60	40	7	
EN4554	Deep Learning for Vision	Е	2	2	3.0		60	40	7	
EN4574	Advanced Pattern Recognition	Е	2	2	3.0		60	40	8	6
EN4730	Convex Engineering Design	Е	2	2	3.0		70	30	8	
EN4470	Probabilistic System Analysis	Е	2	2	3.0		60	40	8	
		To	otal							12

Minor in Pattern Recognition

Faculty Electives

Semester 2							
		Hours/	Week	Crec	lits	Evaluation	
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
CS2813	Visual Programming	1	2	2.0	-	40	60
CS2843	Computer Systems	2	2	3.0	-	40	60
EN1055	Introduction to Telecommunications	2		2.0	-	40	60
EN1803	Basic Electronics for Engineering Applications	2	2	3.0	-	40	60
ME1803	Introduction to Manufacturing Processes	2	2	3.0	-	40	60
MN2020	Entrepreneurship Theory	3		3.0	-	50	50

Semester 3	3						
		Hours/	Week	Credits		Evalua	ation
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%
CE2830	Road Safety and User Behaviour	2	2	3.0	-	50	50
CS2813	Visual Programming	1	2	2.0	-	60	40
ER2631	Elementary Gemmology	3/2	2/2	2.0	-	30	70
ER2210	Subsurface Ventilation	2	0	2.0	-	30	70
EE2804	Applied Electricity	2	2	3.0	-	40	60
EN1803	Basic Electronics for Engineering Applications	2	2	3.0	-	40	60
ME1803	Introduction to Manufacturing Processes	2	2	3.0	-	40	60
ME1823	Fundamentals of Engineering Thermodynamics and Applications	5/2	2/2	3.0	-	30	70
LT2030	Operations Engineering	4/2	4/2	3.0	-	40	60
LT2050	Principles of Supply Chain Engineering	4/2	4/2	3.0	-	40	60
MA2014	Differential Equations	2	-	2.0	-	30	70
MA2024	Calculus	2	-	2.0	-	30	70
MA2034	Linear Algebra	2	-	2.0	-	30	70
MA3014	Applied Statistics	2	-	2.0	-	30	70
MA3024	Numerical Methods	2	-	2.0	-	30	70
EL2410	Introduction to Literary Criticism	3	-	3.0	-	100	-
EL2510	Academic Writing for Engineering Studies	3	-	3.0	-	100	-

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 4							
		Hours/	Week	Crea	lits	Evalua	ation
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
BM2860	Biomedical Engineering and Applications	2	2	3.0	-	40	60
CS2833	Modular Software Development	2	2	3.0	-	50	50
CS2023	Data Structures and Algorithms	2	2	3.0	-	40	60
CS3033	Computer Networks	2	2	3.0	-	40	60
EN2853	Embedded Systems and Applications	2	2	3.0	-	60	40
EN2860	Electronic Instrumentation and Signal Processing	2	2	3.0	-	40	60
ME2851	Fundamentals of Machine Elements Design	2	2	3.0	-	30	70
ME1823	Fundamentals of Engineering Thermodynamics and Applications	5/2	2/2	3.0	-	30	70
LT2110	Transport Demand Modelling and Simulation	4/2	4/2	3.0	-	40	60
MA2034	Linear Algebra	2	-	2.0	-	30	70
MA2054	Graph Theory	2	-	2.0	-	30	70
MA3014	Applied Statistics	2	-	2.0	-	30	70
MA3024	Numerical Methods	2	-	2.0	-	30	70
MN3021	Entrepreneurship Business Basics	3	-	3.0	-	50	50
EL2420	Introduction to Poetry and Drama	3	-	3.0	-	100	
EL2520	Technical Report Writing for Engineering Studies	3	-	3.0	-	100	

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 5							
		Hours/	Week	Credits		Evaluation	
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
CS3033	Computer Networks	2	2	3.0	-	40	60
CS3413	Advanced Networking	2	2	3.0	-	40	60
ER3420	Petroleum Engineering Upstream Processes	3	0	3.0	-	40	60
EN3021	Digital Systems Design	2	2	3.0	-	50	50
EN3150	Pattern Recognition	2	2	3.0	-	70	30
EN3230	Wireless Networks	2 2		3.0	-	50	50
EN3251	Internet of Things	2	2	3.0	-	100	0
EN3563	Robotics	2	2	3.0	-	50	50
TE3220	Analytics for Manufacturing and Servicing Businesses	5/2	2/2	3.0	-	70	30
MA2024	Calculus	2	-	2.0	-	30	70
MA3014	Applied Statistics	2	-	2.0	-	30	70
MA3024	Numerical Methods	2	-	2.0	-	30	70
MA3030	Operational Research	2	-	2.0	-	30	70
MN3011	Multidisciplinary Design, Innovation and Venture Creation	2	-	2.0	-	50	50
MN3053	Industrial Management and Marketing	3	-	3.0	-	30	70
MN3043	Business Economics and Financial Accounting	3	-	3.0	-	30	70
EL3410	Contemporary South Asian Writing	3	-	3.0	-	100	-
EL3510	Professional Communication for Engineering Contexts	3	-	3.0	-	100	-

Semester 6							
		Hours/	Week	Crec	lits	Evaluation	
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
EN3330	Introduction to Engineering Optimization	2	2	3.0		70	30

STUDENT HANDBOOK

2020 INTAKE

Semester 7							
		Hours/	Week	Cree	lits	Evalua	ation
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
BM4152	Biosignal Processing	2	2	3.0		70	30
BM4302	Medical Image Processing	2	2	3.0		70	30
BM4322	Genomic Signal Processing	2	2	3.0		50	50
CE4581	Intelligent Transportation Systems	2	1	3.0		40	60
CE4611	Sustainable design and whole lifecycle	3	0	3.0		100	0
CE4571	Operations Research for Infrastructure Systems	2	1	3.0		40	60
CH4140	Biotechnology	2	2	3.0		40	60
CH4235	Polymer Processing Operations	2	2	3.0		30	70
CH3720	Waste to Energy	2	2	3.0		40	60
CH4440	Petrochemical Process Operations	2	2	3.0		30	70
CH3253	Environmental Bioengineering	2	2	3.0		30	70
CS3121	Introduction to Data Science	2	2	3.0		40	60
CS3203	Software Engineering Project	1	4	3.0		100	
CS3501	Data Science & Engineering Project	1	4	3.0		100	
ER4730	Sustainable Consumption of Earth Resources	2	2	3.0		60	40
EE4715	Nuclear Power and Engineering Applications	2	2	3.0		40	60
EN4470	Probabilistic System Analysis	2	2	3.0		60	40
EN4554	Deep Learning for Vision	2	2	3.0		60	40
EN4640	Statistical Signal Processing	2	2	3.0		60	40
EN4594	Autonomous Systems	2	2	3.0		50	50
MT4281	Surface Engineering and Tribiology	5/2	1	3.0		40	60
MT4810	Continuum Scale Numerical Simulation of Material Systems	5/2	1	3.0		40	60
TE4290	Production Planning & Control	5/2	2/2	3.0		40	60
TE4230	Textile Composites	5/2	2/2	3.0		30	70
LT4020	Project Management and Appraisal	4/2	4/2	3.0		40	60
MA4014	Linear Models and Multivariate Statistics	3		3.0		30	70
MA4090	Mathematical Statistics	3		3.0		30	70
MA4034	Time Series and Stochastic Process	3		3.0		30	70
MA4000	Experimental Design and Quality Control	3		3.0		30	70

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 7	(continued)						
		Hours/	Week	Credits		Evaluation	
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%
MA4110	Finite Element Analysis	3		3.0		30	70
MA4120	Advanced Differential Equations	3		3.0		30	70
MA4130	Optimization	3		3.0		30	70
MA4144	Neural Networks and Fuzzy Logic	3		3.0		30	70
MA4150	Financial Mathematics	3		3.0		30	70
MA4160	Advanced Operational Research	3		3.0		30	70
MA4210	Mathematical Analysis and Special Functions	3		3.0		30	70
MA4220	Topics in Algebra and Topology	3		3.0		30	70
MA4230	Number Theory and Cryptography	3		3.0		30	70
MA4240	Mathematical Methods in Theoretical Physics	3		3.0		30	70
MN4023	Engineering Economics	2		2.0		30	70
EL4410	Literature and Translation	3		3.0		100	
EL4510	Research Communication for Engineering Studies	3		3.0		100	

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 8							
		Hours/	Week	Cred	lits	Evalu	ation
Code	Module Name	Lecture	Lab/ Tute	GPA	NGPA	CA%	WE%
CE4621	Engineering Response to Climate Change	3	0	3.0		100	
CS3121	Introduction to Data Science	2	2	3.0		40	60
CS3203	Software Engineering Project	1	4	3.0		100	
CS3501	Data Science & Engineering Project	1	4	3.0		100	
ER4740	Remote Sensing and GIS for Engineers	2	2	3.0		30	70
EE3064	Energy Systems	2	2	3.0		40	60
EE4380	Reliability Evaluation of Engineering Systems	2	2	3.0		40	60
EE4410	Electrical Services for Buildings	2	2	3.0		40	60
EN4574	Advanced Pattern Recognition	2	2	3.0		60	40
EN4650	Computer Systems Architecture	2	2	3.0		70	30
EN4730	Convex Engineering Design	2	2	3.0		70	30
MT4420	Energy Materials	5/2	1	3.0		40	60
MT4774	Paint Technology	5/2	1	3.0		40	60
ME2860	Automotive Technology	5/2	2/2	3.0		40	60
TE4330	Smart and Functional Textiles	5/2	2/2	3.0		40	60
MA4014	Linear Models and Multivariate Statistics	3		3.0		30	70
MA4090	Mathematical Statistics	3		3.0		30	70
MA4034	Time Series and Stochastic Process	3		3.0		30	70
MA4000	Experimental Design and Quality Control	3		3.0		30	70
MA4110	Finite Element Analysis	3		3.0		30	70
MA4120	Advanced Differential Equations	3		3.0		30	70
MA4130	Optimization	3		3.0		30	70
MA4144	Neural Networks and Fuzzy Logic	3		3.0		30	70
MA4150	Financial Mathematics	3		3.0		30	70
MA4160	Advanced Operational Research	3		3.0		30	70
MA4210	Mathematical Analysis and Special Functions	3		3.0		30	70
MA4220	Topics in Algebra and Topology	3		3.0		30	70
MA4230	Number Theory and Cryptography	3		3.0		30	70
MA4240	Mathematical Methods in Theoretical Physics	3		3.0		30	70
MN4011	Business Plan Development	2		2.0		40	60
MN4093	Management Skills Development	2		2.0		30	70
EL4420	Science Fiction: Cyborgs and Dystopia	3		3.0		100	
EL4520	Journalism and Journalistic Writing	3		3.0		100	

Humanities Subjects

Semester 2										
			-	urs/ eek	Credits		Norm		Evaluatio n	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
HM2480	History and Development of Engineering	Е	2		2.0				100	
HM2450	Introduction to Psychology	Е	2		2.0				100	
HM2510	Sri Lankan Built Heritage	Е	2		2.0				100	
HM2610	Nutrition and Health	Е	2		2.0				100	
HM2620	Food and Nutrition	Е	2		2.0				100	
HM2630	Photography	Е	2		2.0				100	
HM2640	Photography as an Art	Е		4	2.0				100	
HM2710	Astronomy and Cosmology	Е	2		2.0				100	
HM2430	Human Rights	Е	2		2.0				100	
HM2410	Responsible Citizenship	Е	2		2.0				100	
HM2330	Yoga Practice	Е		4	2.0				100	
HM2010	Sinhala as a Second Language	Е	2		2.0				100	
HM2020	Tamil as a Second Language	Е	2		2.0				100	
HM2110	Effective Communication	Е	2		2.0				100	
HM2210	Creative Writing	Е	2		2.0				100	
	Total				30.0	0.0	0.0	0.0		

STUDENT HANDBOOK

2020 INTAKE

Semester 4										
			Hours/ Week		Credits		Norm		Evaluatio n	
Code	Module Name		Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
HM2310	Meditation	Е	2		2.0				100	
HM2610	Nutrition and Health	Е	2		2.0				100	
HM2460	Public Administration	Е	2		2.0				100	
HM2670	Video Production	Е		4	2.0				100	
HM2520	Intangible Heritage of Sri Lanka	Е	2		2.0				100	
HM2350	Western Classical Music	Е		4	2.0				100	
HM2470	Life skills for Engineers	Е		4	2.0				100	
HM2660	Digital Photography	Е		1	2.0				100	
HM2010	Sinhala as a Second Language	Е	2		2.0				100	
HM2030	Japanese as a Foreign Language	Е	2		2.0				100	
HM2040	Chinese as a Foreign Language	Е	2		2.0				100	
	Total				30.0	0.0	0.0	0.0		

Modules

Semester I

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA
1	CE1023	Fluid Mechanics	2.0	С	GPA
Hours	s/Week	D ronoguigitog / Conoguigitog	Ev	aluation 9	%
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA	,	WE
2	2/4	None	20		80
Learning O	utcomes				
 defi engi dete equi appl 	ne the propertie neering practic rmine hydrosta librium and sta y the concepts cities, pressure	le, students should be able to, es of fluids and describe the significance of su e, atic forces on submerged surfaces/ bodies bility such surfaces/bodies in applications in e of conservation of mass, energy and moment s, flow rates, forces, etc., in applications in en	and assess ngineering j tum of fluid	the condi practice, and s and deter	tions for nd
2. Ch 3. Fli 4. Fli	naracteristics/ P uid Statics uids in Motion	lications in fluid mechanics roperties of Fluids ydraulic machinery			

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA
1	CS1033	Programming Fundamentals	3.0	С	GPA
Hour	s/Week	Dramanisitas / Carromisitas	Ev	valuation ^o	%
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE
2	2	None	20		80
Learning O	utcomes				
After compl	eting this modu	le, students should be able to			
• Dev	rice algorithms	to solve simple computational problems			
• Dev	elop programs	from algorithms using a high-level program	ning languag	e (e.g., Pyt	hon)
		for simple control applications using embedo	ded hardware	platforms	
Syllabus O	ıtline				
• Intr	oduction to Cor	nputing			
 Pytl 	non: Introductio	on, Operators, Expressions			
 Pytl 	non: Selection C	Control Structures			
 Pytl 	non: Loop Cont	rol Structures SP			
 Pytl 	non: Lists				
 Pytl 	non: Functions				
• Dat	a Representatio	n			
• Prol	blem Solving I				
Prol	blem Solving II				
	blem Solving II				
• Con	nputer System a	& Hardware I			
	nputer System &				

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA
1	EE1040	Electrical Fundamentals	2.0	С	GPA
Hou	rs/Week	D	Ev	aluation ⁶	%
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE
2	2/4	None	20		80
Learning	Outcomes				
After com	pleting this modu	le, the student should be able to;			
• 1	Describe the prac	tical aspects of basic circuit elements.			
• 1	Analyze ac circui	ts using series/parallel simplifications, volta	ge/current div	ision rules	
		e balanced circuits in terms of line quantities			
•]	Draw up a compl	ete wiring circuit f a hushed and appreciate	the importance	e f differen	ıt
	protecting and sat	fety devices			
Syllabus (
		trical Engineering			
	Basic Circuit Eler				
	•	ristics of linear circuit elements (resistors, i		• ·	
		ips, voltage sources, solutions of resistive c	ircuits using K	lirchoff's l	aws.
	AC Theory	form, waveform parameters, phasor repres	antation com		contotion
		tance, complex power and energy, power fac			
		vision rules, AC circuit calculations.	loi, series/par	anersmipt	incations,
	Three Phase Bala				
		inced three phase systems, circuit diagrams,	delta-star con	nection an	d
		er-phase equivalent circuit, power factor con			
		and Basic Electrical Safety			
		s of a domestic electrical system, overcurr	rent/short circ	uit protect	ion, earth
1	eakage protection	n, devices, case studies			

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1	MA1014	Mathematics	3.0 C GF				
Hour	s/Week	Prove suisites / Come suisites	Ev	aluation ⁽	%		
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE		
5/2	1	None	20 80				
Learning O	utcomes						
		tion of this course, students should be able t					
		ons and functions of complex variables, exp	olore 3D geom	etry using	vectors		
		problems for matrices.					
		one real variable up to power series.					
		uations up to second order linear with non-	constant coeffi	icients			
Syllabus Or	utline						
Algebra							
		Euler's Identity, complex valued functions a					
		ora, vector product, scalar product, scalar tri	ple product, v	ector triple	e product		
		plane, vector norms					
	-	adjoint, determinant, inverse and trace of a r	-	-			
		ian elimination, echelon forms, rank, eigen	values and eig	en vectors	,		
	nalization, matr	ix norms.					
Real Analys			1				
		Introduction to quantifiers and sets, real nu	mber system,	inequalitie	s,		
		um, completeness axioms.	4	1::	c		
	uity, differentia	d Differentiability: relations, functions and	uleir inverses,	minit of a	runction		
	•	ermediate value theorem, extremum value	theorem Pol	le's theory	m maar		
	theorem, L' Ho		ulcorelli, Kol	ie s meore	in, mea		
		: Convergence of sequences and series, mor	notone conver	gence theo	rem		
	s, Taylor's serie			Sence meo	10111.		
Integration a							
0		integral as an area, First and second fundan	nental theorem	ns of calcul	us.		
		bility of a continuous function, Integration					
		ntegrals: tests of convergence, gamma functi					
		equations: classification of ODEs (Linear an		, First orde	er		
	-	equations: variable separable homogeneou					

• ordinary differential equations: variable separable, homogeneous, linear, Bernoulli Second order linear differential equations: equations with constant coefficients, Wronskian method

Semester	ter Code Module Title Credits				GPA / NGPA		
1	ME1033	Mechanics	2.0 C GPA				
Hour	s/Week		Ev	aluation ⁶	%		
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE		
2	2/4	None	20		80		
Learning O	outcomes						
Upon compl	eting this cours	e, the students should be able to:					
 Calcu 	late sectional pr	operties of plane areas,					
 Calcu 	late internal for	ces in beams,					
	• •	erminate / indeterminate trusses, their stabil	lity and deter	mine force	s in truss		
memb							
		part (Dynamics) of the module, the students		ole to:			
		v of motion of particles, rigid bodies and 2D	0				
		energy associated in particles and rigid bod					
		tions of damped, single degree of freedom sy	ystems.				
Syllabus Or	ıtline						
Statics							
-	rties of plane ar						
	al forces (BMD						
 Princi 	ple of superpos	ition					
	mination of fore	ces in assemblies of rigid bodies					
Dynamics							
 Funda 	mentals of Dyr	amics					
and ri • mecha • Kinet angul	gid bodies (rela anisms, instanta	es (rectilinear and curvilinear motion, relativ tive motion between two points in a rigid bo neous centre of rotation method, introduction and rigid bodies (force, torque, work, energ	dy, velocities n to accelerat	in 2D link ion)			
- 1100 (.o.anono (unuu	inped and damped, of single degree of freed	o 0, 5001115.				

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA				
1	MT1023	Properties of Materials	2.0	С	GPA				
Hour	s/Week	Provoquinitas / Concentration	E	valuation %	6				
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE				
2	2/4	None	20		80				
Learning Out	comes								
Recogni	ze the structure of	e, students should be able to; f metals, polymers and ceramics between the structure of materials, th	eir properties	and applica	tions				
Assess t	he properties of e	ngineering materials							
Syllabus Outl	ine								
Introduce	tion to engineerir	ng materials							
Structur	e of atoms, atomi	c theories, atomic bonding in materia	ls						
Crystal	structures and def	ects							
Introduce	ction to nanomater	rials							
Mechan	ical properties of	materials							
Electrica	al properties of m	aterials							
Degrada	tion of Materials								
Function	Functional Materials and their applications								
Basic m	aterials selection								

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA			
1,2	EL1030	Language Skills Enhancement	2.0	С	GPA			
Hours	s/Week	D ronoquicitos / Conoquisitos	E	valuation %	Ó			
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE			
	2	None	100		0			
Learning Out	comes							
(UTEL I	bands 6, 7 and 8 r	eved the competencies for listening, sepectively)	peaking, read	ing and writ	ung			
Syllabus Outl								
	e 1	spoken texts and dialogues						
1	g on given topics.							
Asking	questions and resp	bonding to questions.						
Reading	comprehension							
Summar	rising and synthes	ising						
 Describit 	ing objects, mech	anisms and processes						
Discussion/ writing activities								
Describing data and graphical information								
Functional grammar								

Semester II

Semester	Code	Module Title C/E/O GPA NGP							
2	CH1051	Enginee	Engineering Thermodynamics						
Hours	s/Week	Credits	Propogniaitos / Conservisitos	Evalua	ation %				
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE				
2	2	3.0	None	40	60				
Learning O	Learning Outcomes								

On successful completion of this module, students are able to:

- LO1: Understand the basic concepts in thermodynamics.
- LO2: Recognize the applicability of Laws of thermodynamics in process industry.
- LO3: Analyse flow processes and nonflow processes.
- LO4: Explain the P-v-T behaviour of real and ideal gases.
- LO5: *Describe* different forms of energy and the limitations of the world's energy resources.
- LO6: Apply Laws of thermodynamics for cyclic processes and liquefaction processes.

Syllabus Outline

Basic concepts in Thermodynamics

Scope and limitations of thermodynamics, Systems and processes, State and properties, Phase rule, Zeroth Law, Heat reservoirs and Heat engines, Different flow patterns

First Law of Thermodynamics

Moving boundary, General energy balance relation, Specific heats, Relations for the internal energy and enthalpy of ideal gases; General conservation of mass relation for control volumes, Flow work and the energy of fluid streams

P-v-T behaviour

Various property diagrams and P-v-T surfaces of pure substances, Property tables, Ideal-gas equation of state, Compressibility factor, Deviation of real gases from ideal-gas behaviour: van der Waals, Beattie-Bridgeman, and Benedict-Webb-Rubin equations

Second laws of Thermodynamics

Various statements of the second law, Perpetual motion machines and the thermodynamic temperature scale, Clausius inequality and the basis for the definition of entropy, Increase of entropy principle, Isentropic processes, Steady flow work

Applications of the Laws of Thermodynamics

Energy: Concept of energy, Reversible work, Energy destruction, Second-law efficiency, Exergy balance

Flow processes: Continuity and energy equations, Flow in pipes, nozzles, ejectors, and compressors Refrigeration: Refrigerators and heat pumps, Reversed Carnot cycle, Vapor-compression refrigeration cycle, Introduction to gas refrigeration cycles

Liquefaction processes: Vaporization of liquid, Free expansion, Isentropic expansion

Steam power plants: Carnot vapor cycle, Rankine cycle and applications

Internal combustion engine: Carnot cycle, Air standard assumptions, Reciprocating engines, Auto cycle, Diesel cycle

Gas-turbine power plants: Brayton Cycle

Semester	Code		Module Title	C/E/O	GPA / NGPA				
2	CH1044		Fluid Dynamics	С	GPA				
Hours	s/Week	Credits	Pronognizitos / Conognizitos	Evaluation %					
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE				
3	2	4.0	CE1023	40	60				
Learning (Learning Outcomes								

After completing this module, the students should be able to,

- LO1: Understand the general concepts of momentum transport.
- LO2: Recognize different flow patterns and analyze their applications.
- LO3: Use integral analysis and differential analysis techniques to analyze fluid flow.
- LO4: Apply dimensional analysis and conservation laws in solving problems in fluid flow.
- LO5: Design basic fluid flow systems in process industry.

Syllabus Outline

General concepts of momentum transport

Viscosity, Mechanisms of momentum transport: molecular momentum transport and convective momentum transport, Analogy of mass, momentum and energy transport, Conservation Laws: continuity equation, momentum equation and energy Equation.

Different flow patterns

Laminar and Turbulent behaviour of fluid flow, Flow of a falling film, Flow through an annulus, Flow between parallel plates, Rotational viscometers, Power transmission between parallel discs, Creeping flow, Fully developed pipe flow, Pressure drop and head loss, Effect of gravity on velocity and flow rate, Newtonian and Non-Newtonian flow in pipes, Roughness of the walls of the pipe, Boundary layer and the viscous sub layer, Eddy viscosity, Moody diagram, Reynolds stress, Prandlt's mixing length theory, Velocity distribution in turbulent flow.

Differential analysis of fluid flow

Differential equations of fluid motion: continuity equation, Euler's Equation and Navier Stokes Equation, Stream function, Boundary layer approximation, Boundary layer thickness, Momentum integral equation, Laminar and turbulent boundary layers, Boundary layers with pressure gradients, Friction and pressure drag.

Dimensional analysis and application of conservation laws

Dimensions, units, Dimensional homogeneity, Dimensional analysis and similarity, Buckingham pi theorem, Pump scaling laws, Pump types, Fundamental parameters in analysing pumps, Pump performance curves and Matching a pump to a piping system, Pump cavitation and Net positive suction head, Minor losses, Series and parallel pipes, Piping systems with pumps and turbines, Flow rate and velocity measurements, Mixing and agitation.

Compressible fluid flow

Compressibility, Mach number, Stagnation properties, One dimensional isentropic flow, Isentropic flow through nozzles, Normal shock waves, Duct flow with heat transfer and negligible friction, Adiabatic duct flow with friction.

2 CH1061 Chemical and Bioprocess Engineering Principles C GPA Hours/Veck Credits Prerequisites / Corequisites Evaluation % 3 2 4.0 None 40 60 Learning Outcomes After completing this module, the students should be able to, LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and external constraints LO4: Perform material balance and energy balance calculations for a given system LO5: Estimate resource requirements and process parameters using material and energy balance LO5: Estimate resource requirements and process parameters using material and energy balance LO6: Explain the importance of the steps associated with the process scaling up applying to the chemical and process flow sheet Syllabus Outline Matural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Dvelopment Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances	Semester	Code		Module Title	C/E/O	GPA / NGPA
Lecture Lab/Tutes Credits Prerequisites / Corequisites CA WE 3 2 4.0 None 40 60 Learning Outcomes After completing this module, the students should be able to, . . 4.01 LO1: Understand the evolution of chemical and bioengineering . LO2: Select unit operations necessary for a given process 4.03: Identify resources required for a process based on internal and external constraints . LO3: Select unit operations necessary for a given process 4.03: Identify resources requirements and process parameters using material and energy balance . LO4: Perform material balance and energy balance calculations for a given system 6 LO5: Explain the importance of the steps associated with the process scaling up applying to the chemical and process industry . LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering . . . Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable . . P	2	CH1061	Chemical and E	Bioprocess Engineering Principles	С	GPA
Lettine Lab. The second se	Hours	s/Week	Credita	Propagniaitas / Conagniaitas	Evalu	ation %
Learning Outcomes After completing this module, the students should be able to, • LO1: Understand the evolution of chemical and bioengineering • LO2: Select unit operations necessary for a given process • LO3: Identify resources required for a process based on internal and external constraints • LO4: Perform material balance and energy balance calculations for a given system • LO5: Estimate resource requirements and process parameters using material and energy balance • LO6: Explain the importance of the steps associated with the process scaling up applying to the chemical and process flowstry • LO7: Develop a process flowstry • LO7: Develop a process flowstry • LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance	Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE
 After completing this module, the students should be able to, LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and external constraints LO4: Perform material balance and energy balance calculations for a given system LO5: Estimate resource requirements and process parameters using material and energy balance LO6: Explain the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	3	2	4.0	None	40	60
 LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and external constraints LO4: Perform material balance and energy balance calculations for a given system LO5: Estimate resource requirements and process parameters using material and energy balance LO6: Explain the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive						
 LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and external constraints LO4: Perform material balance and energy balance calculations for a given system LO5: Estimate resource requirements and process parameters using material and energy balance LO6: Explain the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy-renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	After comp					
 LO3: <i>Identify</i> resources required for a process based on internal and external constraints LO4: <i>Perform</i> material balance and energy balance calculations for a given system LO5: <i>Estimate</i> resource requirements and process parameters using material and energy balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	•					
 LO4: <i>Perform</i> material balance and energy balance calculations for a given system LO5: <i>Estimate</i> resource requirements and process parameters using material and energy balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			-			
 LO5: <i>Estimate</i> resource requirements and process parameters using material and energy balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive 	•		-	-		
 balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	•	-				
 LO6: <i>Explain</i> the importance of the steps associated with the process scaling up applying to the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	•		te resource require	ements and process parameters usin	g material an	d energy
the chemical and process industry • LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive						
 LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive 	•	-	•	· ·	ess scaling up	o applying to
Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			-	-		
Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			p a process flow s	heet		
Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive						
 Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive 						
Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere; Sources of energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive		_	cess engineering			
 energy- renewable and non-renewable Process Development Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive 			·		L:	
Process DevelopmentConcept of process development, design constraints, steps involved in process design.Unit OperationsDefinitions and applications of different unit operations and processes.Flow sheetingtypes of process plant design diagrams, instrument and equipment identification, computer aided flow sheetingMaterial BalanceBalances for non-reacting systems and reacting systems with single and multiple reactions.Energy BalanceBalances for non-reacting systems and reacting systems with single and multiple reactions.Transport phenomenaTransport of mass, heat, and momentumUtilities and instrumentationSteam production and distribution, types of boilers, cooling water and tower, air compressors, positive				onere, nydrosphere atmosphere and	biosphere; So	burces of
Concept of process development, design constraints, steps involved in process design. Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			on-renewable			
 Unit Operations Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive 		-	lonmont design o	onstraints stans involved in process	dasign	
Definitions and applications of different unit operations and processes. Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	-	-	iopinent, design o	bilstraints, steps involved in process	uesign.	
 Flow sheeting types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive 	-		one of different w	nit operations and processes		
types of process plant design diagrams, instrument and equipment identification, computer aided flow sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive				int operations and processes.		
sheeting Material Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive		0	sion diagrams ins	strument and equipment identification	n computer	aided flow
Material BalanceBalances for non-reacting systems and reacting systems with single and multiple reactions.Energy BalanceBalances for non-reacting systems and reacting systems with single and multiple reactions.Transport phenomenaTransport of mass, heat, and momentumUtilities and instrumentationSteam production and distribution, types of boilers, cooling water and tower, air compressors, positive		ocess plant de	sign diagrams, ms	stument and equipment identificant	ni, computer	alded now
Balances for non-reacting systems and reacting systems with single and multiple reactions. Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	0	Ralance				
Energy Balance Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			o systems and read	cting systems with single and multi	ole reactions	
Balances for non-reacting systems and reacting systems with single and multiple reactions. Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			5 systems and rea	systems which single and multi	pro reactions.	
Transport phenomena Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	00		g systems and read	cting systems with single and multi	ole reactions.	
Transport of mass, heat, and momentum Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive			- jotenio una rea	of otering the single and many		
Utilities and instrumentation Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	-	-	and momentum			
Steam production and distribution, types of boilers, cooling water and tower, air compressors, positive	-					
				f boilers, cooling water and tower.	air compresso	ors, positive
	-		• •	-	r	× 1

Semester	Code		Module Title	C/E/O	GPA / NGPA
2	CH1071	Chemistry and Gro	een Chemistry for Process Engineers	С	GPA
Hour	s/Week	Cardita	D enoministry (Companyisity)	Eval	uation %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
2	2	3.0	None	40	60
Learning (
• • • • • •	LO1: Acquire it to understand LO2: Discuss ti industrial appli LO3: Apply pr charged chemi LO4: Distingu industrial appli LO5: Select th polymer manu LO6: Apply an	d various chemical e the phase equilibria, ications inciples of electroch cal species <i>ish</i> different organic ications e most suitable poly facturing process alytical chemistry ka	termolecular interactions and properties of mattengineering processes chemical equilibria and acid-base equilibria and emistry to evaluate the interaction between elect reaction mechanisms and apply natural product merization mechanism and process and use then nowledge in quantitative and qualitative analysis	l apply the trical energ chemistry n in designi	knowledge i y and in related ng the
	compounds an	d evaluate chemical	changes		
• Syllabus		the basic knowledge	in green chemistry and practice it in good manu	ifacturing p	processes
for one comp Properties of Solubility an Colligative p Chemical E/ Equilibrium constants, Re Acid-Base E/ Strengths of Ionic produc Electrochem Quantitative reversible an (reduction) p Applied Org Introduction use of organi Free-radical polymerizati Polymerizati Bulk polyme Analytical C Quantitative	of phase, Compor yonent system, Li f Solutions d dissociation pro- roperties, Mixtur quilibria constants and the elationship betwe cquilibria acids and bases (t of water histry aspects of Farada d irreversible cel otential ganic Chemistry and ion Reactions polymerization, G on, Coordination ion Processes rization, Solution Chemistry: and qualitative a	iquid vapor equilibrium occess, Saturated solution res and Colloids sir quantitative dependent en chemical kinetics and elementary idea), Ioniz ay's laws of electrolysic ls with examples, Elect and Reaction Mechanic reactions and their n reaction mechanisms in Cationic polymerization polymerization a polymerization, Suspu- nalysis, Analytical sepa	nechanism: Addition, Elimination, Substitution and Re- n industrial applications n, Anionic polymerization, Condensation polymerization ension polymerization and Emulsion polymerization arations, and Chromatographic techniques: Principles a	is y product co ons of variou uilibrium n, Ionization Il potentials, quation; Star arrangement on, Ring-ope nd efficiency	nstant, is equilibrium constants, Chemical cell idard electrod reactions, The ning
spectroscopy Natural Pro Classification Computatio	y, NMR spectrosc ducts and Indus n of natural produ- nal Chemistry	copy, Mass spectrometr strial Applications acts based on the chem	methods: IR spectroscopy, UV Visible spectroscopy, <i>y</i> ical structure, manufacturing process and their applicat cking, and simulations		ption

Semester III

Semester	Code	Module Title C/E/O GPA / NGPA						
3	CH2631	Chen	Chemical Thermodynamics C GPA					
Hours	s/Week	Carlin	D	Evalu	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH1051	40	60			
Learning (Outcomes			•				
After	completing thi	s module, student	s should be able to,					
•	LO1: Unders	stand the chemical	l thermodynamic processes and find	l the feasibilit	y of such			
	processes.							
•			odynamics to solve the problems rel	ated to chemi	cal changes.			
•			ange in chemical reactions.					
•			mic properties of pure fluids and sol					
•			of thermodynamic parameters for g					
•			c concepts to understand and evaluation	ate the phase	equilibria and			
		ction equilibria.						
chemical reaction equilibria. Syllabus Outline Basic concepts in chemical thermodynamics Thermodynamic processes involve in chemical changes: phase transitions, chemical reactions, dissolution, Basic definitions of thermodynamic properties based on chemical processes. Determination of enthalpy changes in chemical reactions: exothermic reactions, endothermic reactions, reversible reactions, Heat changes in dissolution, Phase transitions, Effect of temperature on heat capacity. Interpretation of thermodynamic properties of pure fluids Classification of thermodynamic properties. Gibbs free energy and Helmholtz free energy for chemical processes. Relationships among thermodynamic properties: Gibbs equations and Maxwell relations, Clausius- Clapeyron Equation. Fugacity, effect of pressure and temperature on Activity. Thermodynamic properties of solutions Partial molar properties, Chemical potential, Fugacity in solutions, Henry' Law and dilute solutions, Activity in solutions and Activity coefficients, Gibbs-Duhem Equations, Property changes of mixing, Heat effects of mixing. Phase equilibria Phase equilibria, Phase diagram for binary solutions, Non-ideal solutions, Vapour-liquid equilibria, Liquid-liquid equilibrium diagrams. Chemical Reaction equilibrium Equilibrium constant and standard free energy change, Effect of temperature and pressure on Equilibrium constant, Other factors affecting equilibrium conversions, Liquid-phase reactions, Heterogeneous reaction								

Semester	Code		Module Title	C/E/O	GPA / NGPA
3	CH2015	Не	at and Mass Transfer	С	GPA
Hours/Week		Evaluation Evaluation		ation %	
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
3	2	4.0	CH1051, CH1044	40	60
Looming	Jutcomos		•		

Learning Outcomes

After completing this module, students should be able to,

- LO1: *Recognize* the heat and mass transfer related equipment in the process industry.
- LO2: Understand basic principles of heat and mass transfer.
- LO3: Analyze heat and mass transfer problems using conservation equations.
- LO4: Calculate heat and mass transfer coefficients.
 - LO5: Understand the concepts related to mass exchanger design.
- LO6: *Design* a heat exchanger for a given duty.

Syllabus Outline

Introduction

Momentum, heat, and mass transfer analogies, three modes of heat transfer mechanisms.

Heat Conduction

Derivation of general three-dimensional conduction equation, steady state one dimensional conduction equations for different geometries, thermal resistance concept & its importance, critical thickness of insulation, heat transfer in extended surfaces, one-dimension unsteady state heat conduction, Lumped system analysis, use of transient temperature charts (Heisler's charts).

Heat Convection

Concepts boundary layers, concepts of heat transfer coefficients, application of dimensional analysis for free convection and force convection, physical significance of dimensionless numbers related to heat convection, use of correlations of free convection and force convection.

Heat Transfer with phase changes

Types of condensation, Nusselt's theory for laminar condensation on a vertical flat surface, use of correlations for condensation; regimes of pool boiling, pool boiling correlations.

Thermal Radiation

Definitions of various terms and laws used in radiation heat transfer, radiation heat exchange between two parallel infinite black surfaces and two parallel infinite Gray surfaces, effect of radiation shield, radiation heat exchange between two finite surfaces, electrical analogy for Gray body heat exchange, gaseous radiation.

Design of Heat Exchangers

Classification of heat exchangers, overall heat transfer coefficient, fouling, and fouling factor, LMTD, Effectiveness-NTU methods of analysis of heat exchangers.

Molecular mass transfer

Introduction to mass transfer, definitions of various terms used in mass transfer, Fick's Law, differential equation of mass transfer, state and unsteady state molecular diffusion, diffusion through a stagnant gas film, equimolecular counter diffusion, diffusion in liquids, diffusion in solids.

Convective Mass Transfer

Significant parameters in convective mass transfer, convective mass transfer coefficients, application of dimensional analysis to mass transfer, physical significance of dimensionless numbers related to mass transfer, convective mass transfer correlations, Mass transfer between phases, overall mass transfer coefficient.

Design concepts of Mass Exchangers

Principles involving design of mass exchangers, height of packing, number of transfer units, height of transfer units, mass exchanger design procedure, Applications of mass transfer principles in process industry.

Semester	Code		Module Title	C/E/O	GPA / NGPA						
3	CH2160	Bioproces	s Engineering and Practices	С	GPA						
Hours	s/Week	C l'tr	D	Evalua	ation %						
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE						
2	2	3.0	None	40	60						
Learning (Learning Outcomes										
After completing this module, the student should be able to,											
• L	O1: Discuss th	ne integration of c	chemical engineering and biotechno	logy for the s	ynthesis of						
b	ioproducts.	0									
• L	O2: Recognize	e the principles an	nd applications of bioprocess engine	ering.							
• L	.O3: Identify a	nd analyse param	eters critical for process control in b	oiotechnologia	cal processes.						
• L	O4: Describe	upstream and dov	wnstream aspects of industrial biopr	ocesses.							
• L	O5: Evaluate	the important asp	ects in bioprocess engineering for c	ommercializa	tion of						
b	ioproducts and	l maintaining pro	duct safety.								
• L	O6: Demonstr	ate knowledge or	n the applicability of bioprocess eng	ineering for d	leveloping a						
	ustainable bioe	economy.									
Syllabus O		nology and chem									
Adopting I Process par adapting pr food indust Biomolecu Describe b potential ap understand Bioprocess Advantages processing parameters,	ameters in bio ocesses, substa ry lar compositio iomolecular co pplications and ing computatio es s of bioprocess in biochemic , scale up cons	logical processes ances, devices, or on in valorization composition of v d downstream pro onal methods in va- ces over convention cal engineering, iderations in biop	tions in bioprocess engineering , enzymatic reactions for sustainabl systems that resemble nature, appli n of bioresources arious bioresources, effect of bio cesses, effect of biochemical comp alorization. onal processes, introduction to unit of brief introduction to bioreactor rocess engineering.	ochemical con osition on pro	nature for the mposition on oduct quality, I downstream						
Microorgar measureme Engineerir Sterile prac Biohazard Pathogens pandemics Enzymes in	nt in bioproces ng practices in tices, techniqu s and biosafet and contamin n process indu	rocesses, microbi sses, recent advan- a bioprocesses uses for microbiolo y in bioprocesses ants, discussion astry	al growth requirements for differer ces in cell cultivation, introduction to gically safe production processes, f s with reference to exposures and over chemical catalysts, enzyme sy	o microbial gr ood-water-en incidents, bic	owth kinetics ergy nexus hazards, and						
for enzyma		aury see reactions	ster enemieur eaurysts, enzyme sy	naicoio, parai	netters ernetal						

Semester	Code		Module Title	C/E/O	GPA / NGPA
3	CH2170	L	aboratory Practices I	С	GPA
Hours/Week (spread over two semesters		Credits	Prerequisites / Corequisites	Evaluation %	
Lecture	Lab/Tutes			CA	WE
0	6	3.0	Prerequisites: CH1044, CH1071 Corequisites: CH2160, CH2015	100	0

Learning Outcomes

After completing this module, the student should be able to:

- LO1: *Understand* the basics of engineering drawing and Draw the orthographic projections of a given mechanical part or assembly.
- LO2: *Recognize* suitable software tools for chemical and process engineering applications.
- LO3: Apply software tools to analyse fluid dynamics and heat & mass transfer applications.
- LO4: *Understand* the basic concepts and techniques relevant to fundamentals in chemical and process engineering.
- LO5: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices I module covers the practical aspects of fundamentals in Chemical and Process Engineering (CH1044, CH1071, CH2160, and CH2015) and provide introduction to engineering drawing and computer aided learning.

Engineering Drawing and Computer Aided Learning

Engineering drawing (Part drawing, assembly drawing -manual); Introduction to engineering drawing and drawing software packages (AutoCAD®/ SOLIDWORKS®).

Introduction to MATLAB- matrix, loops and arrays, development of script and function files.

Computational methods for heat and mass transfer: introduction to computational fluid dynamics and development of heat and mass transfer models (1-D model solving by MATLAB®).

Dynamic behaviour of systems and stability-Linear State Space Models (development of lump model based on CH1044 and CH2015, pressure in distributed gas pipe-model development and simulation by Python)

Laboratory Experiments (8 Sessions)

(1) Centrifugal pump demonstration; Flow meter demonstration. (2) Determination of hardness of water.

(3) Synthesis of ethyl butanoate. (4) Identification of biomolecules. (5) Isolation and identification of microorganisms

(6) Determination of outside heat transfer coefficient of circular pipes. (7) Study of analogy between fluid friction and heat transfer/ Demonstration on gas and liquid diffusion. (8) Determination of viscosity index of petroleum oil and proximate analysis of coal.

Open-ended lab

Problem-Based Learning method is used in this experimental base project, where students are given the freedom to develop their own laboratory work, instead of merely following the already set guidelines.

Semester IV

Semester	Code		Module Title	C/E/O	GPA / NGPA	
4	CH2151	Particulate Systems		С	GPA	
Hours/Week		Credits	Prerequisites / Corequisites	Evaluation %		
Lecture	Lab/Tutes	Creatis	rerequisites / corequisites	CA	WE	
3	2	4.0	60			
Learning	Outcomes					
 I I<	LO1: Derive go LO2: Calculate LO3: Analyze t lesign LO4: Select suin natter LO5: Design pr LO6: Describe engineering pra Dutline ynamics n of a Single P a Settling, Class tatistics n of a Single P a Settling, Class tatistics tics and the de f fire and hazar tids through p uation for, Pre Two Phase Flo for gas-liquid on to Fluidization tin fluidized raulic and Pneu tid Separation tion of solid liq Modes of filters. M tion - The basi e liquids in a ce	e and analyze size, he flow characteri table operation an rocess equipment fundamentals of r fundamentals of r fundamentals of r fundamentals of r fundamentals of r fundamentals of r fundamentals of r article in an Infini sification of Partie shape, Non spher nent and Blendin sign of hoppers rds of powders in borous solid beds ssure Drop Across bow Through Porce contact equipmer on, Minimum Flu- beds, Heat Trans- umatic Conveying uid separation equation, Equations f Aembrane separatic c principle of cer	s for the motion of particle/s in a flu , shape, size distribution of a particle stics of fluid flow in packed beds ar ad equipment for the given operation for handling, generation, and separa nanoparticles and investigate its app ite Extent of Fluid, Equation of moti cles based on terminal settling veloc tical particles, equivalent diameters, ng of solids industry s the Bed. Carmen and Kozeny equa bus Solid Beds, Loading and Floor it tidization condition, Pressure drop fer in fluidized beds, fluidized bed g tipment, Sedimentation, Design of T for filtration rate, Filtration equipment	e system Ind fluidized be in in handling p tion of particu- lications in ch ion, Reynold I cities particle size of ation, Burke, a ding condition vs. Fluid velo design, Scale Chickeners ent, Filter area rifuges, Separ	articulate ulate matter emical Number, distributions, and Plummer ns. Diameter city relation, up, Spouted a calculation. ation of two	

Dust and Mist Separation from Gas Streams

Gas cleaning techniques, gravity settling, momentum separators, scrubbers, filters, electrostatic precipitators, magnetic precipitators cyclones, reverse flow cyclone design

Nanotechnology

Introduction to nanotechnology, discuss nanoparticles as a major branch of nanotechnology, compare different options in synthesis, separation, characterization, and applications of nanoparticles in chemical engineering domain.

Crystallization

Principles of crystallization, Nucleation, Kinetics of crystallization, Heat and mass balance, yield, equipment, and design calculations

Semester	Code		C/E/O	GPA / NGPA	
4	CH2180	S	С	GPA	
Hours/Week		~		Evaluation %	
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
Lecture 3		5.0	Prerequisites / Corequisites CH1061		

Learning Outcomes

The students will learn the design and operation of standard separation processes used in the chemical industries; Distillation, Absorption/Stripping, Extraction, Adsorption, Drying, Humidification and Evaporation.

At the end of the course the students are expected to;

- LO1: Analyse the desired separation and select the suitable Unit Operation
- LO2: Describe principles and equilibrium concepts in separation processes
- LO3: Apply material and energy balances for the separation processes
- LO4: *Describe* the effects of various operating variables on the separation output
- LO5: *Design* separation process equipment based on graphical or algebraic analysis

Syllabus Outline

Introduction

Introduction to the role of separation; Common separation processes; Mechanism of separation.

Distillation

Vapor-liquid Equilibrium for binary and multicomponent systems, Differential Distillation, Equilibrium Flash Distillation, Continuous Distillation with Reflux, McCabe-Thiele Analysis, Multistage Batch Distillation, Multiple feeds, side streams, FUG method, Lewis and Matheson method, Complex distillation methods – azeotropic, extractive and two pressure distillation, Design of tray distillation columns and column internals.

Gas Absorption & Stripping

Gas-liquid equilibrium,

Determination of Number of Ideal Stages by graphical method, Theoretical Method (Kremser Equation) Determine the height of continuous contact separator HTU NTU method, Packed column design.

Solvent Extraction

Introduction to Liquid-Liquid Extraction, Phase equilibrium for partially miscible systems, Triangular diagram, Modes of Extraction, Solvent Selection, Phase equilibrium for Immiscible systems Solid-Liquid Extraction, Super Critical Extraction, Determination of number of equilibrium stages for extraction, Extraction column design.

Adsorption and ion exchange

Types of adsorbents, Adsorption equilibrium, modes of adsorption, single stage, cross flow, countercurrent and fixed adsorption unit design calculations, Breakthrough curves, adsorption regeneration, ion exchange resins, equilibrium, kinetics, and equipment.

Evaporation

Introduction to evaporation, Boiling Point Rise (BPR) and Dühring charts, Single stage evaporator calculations, Multiple stage evaporator calculations, Discuss on various modes of evaporators and their industrial applications, Vapor re-compression in evaporators.

Humidification Operations

Basic principles on Humidification Operations, Sample problems to understand the basic terms in humidification. Introduction to psychometric chart and its applicability for humidification and dehumidification operations, Introduction to cooling tower working principle, Preliminary design calculations for cooling towers and spray chambers based on mass and energy balance.

Drying

Introduction to basic principles and Drying curves, Identify the drying process on a psychrometric chart for a given scenario, Different modes of Drying, Calculations to determine the drying parameters under different modes of drying, Dryer design.

Semester	Code		C/E/O	GPA / NGPA				
4	CH2210	Materials	С	GPA				
Hours/Week		Credits	Pronognicitos / Conservicitos	Evalua	tion %			
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE			
2	2	3.0	30	70				
Learning Outcomes								
After comp	leting this mo	dule, students sho	uld be able to;					
•	LO1: Unders	tand the structure	, function, properties of materials us	ed in industria	al			
	applications							
•	LO2: Identify	the suitable mate	erials for a given application					
•	LO3: Recogn	ize the different t	ypes of material failures					
٠	LO4: Choose	appropriate corro	osion preventing methods					
٠	LO5: Differe	ntiate the material	l treatment methods for engineering	performance				
•			ures for material selection	•				
Syllabus O	outline	•						
Overview	to materials u	sed in Chemical	Engineering Applications					
Classification, types of materials and their properties.								
Metals								
Identificati	on of metals (f	ferrous, non-ferro	us, alloys) to suit a given application	n based on the	ir properties			
and machin								
		mechanisms and p						
		nethods for metals						
			ms, selection of appropriate corro	sion prevention	on methods,			
	of the selected							
	atment method	ls.						
Ceramics								
Properties and applications of ceramics. Thermal treatments for ceramics.								
Polymers	eatiments for ce	erannes.						
•	s of polymer n	naterials over trad	itional materials					
Classification of polymers: Natural and synthetic polymers. Polymers (Elastomers, Plastics, Fibres, Thermoplastic Elastomers) used in the process industry, their								
structure-property relationships, and applications.								
Polymer lattices, Composites, blends, and alloys.								
Smart polymeric materials and advanced polymeric materials.								
	ised in polyme		-					
Material Selection for Chemical Engineering Applications								
		-						

Semester	Code		C/E/O	GPA / NGPA					
4	CH4501	Chemical Kinetics and Reactor Design		С	GPA				
Hours/Week		a 1 ¹	D ::: /G :::	Evaluation %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
3	2	4.0 CH1061, CH1051, CH1044, CH2160, CH2631, CH2015		40	60				
Learning	Outcomes				1				
		of this module, s	tudents are able to:						
•	•		cheme and determine the rate law						
•	0		of adsorption and apply them in cor	trolling the r	ates of				
	reactions			in the second second					
•		batch reactors, pl	ug flow reactors (PFRs), continuou	s stirred tank	reactors				
	• LO3: <i>Design</i> batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry								
•		-	ctor or a system for an application of						
•					times				
 LO5: <i>Analyze</i> chemical reactor performance using the distribution of residence times LO6: <i>Analyze</i> and determine the concentrations of the reactants and products at certain 									
-		given conditions	le concentrations of the feactants an	la products di	certain				
Syllabus C		given conditions							
		and reactor desi	gn, Industrial application of reac	tors Analysi	sof				
		s and non-flow r		1013, 11111y 51	3 01				
			e laws, Determination of the order	r of a reactio	n. Influence				
			rhenius equation.						
		ecular reaction d							
		sition state theory							
	n and reactor								
		v reactors, reactor	s in series.						
	l reactor desig								
Liquid pha	se reactions an	d gas phase reacti	ons.						
Steady sta	te non isother	mal reactor desig	gning:						
Adiabatic of	operations								
Unsteady s	state non isotł	ermal reactor d	esigning:						
			dy energy balance.						
		isorption, Adsor	ption isotherms (Langmuir, Freu	ndlich), Non	-competitive				
and nondi									
	and Catalytic	reactors, Definit	ion, properties and classifications	of catalysts,	Steps in				
catalytic r									
catalytic r Homogene	ous and Hete	rogeneous cataly							
catalytic r Homogene Synthesis,	ous and Hete	egeneration, and t	sts: roubleshooting. Chemical reactor p	erformance us	sing the				

Semester	Code	Module Title			GPA / NGPA	
4	CH2270	Laboratory Practices II			GPA	
Hours/Week (spread over two semesters		Credits	Prerequisites / Corequisites	Evaluation %		
Lecture	Lab/Tutes			CA	WE	
0	4	2.0	Prerequisites: CH2170 Corequisites: CH2151, CH2180, CH4501	100	0	
Learning Outcomes						

Learning Outcomes

After completing this module, the student should be able to:

- LO1: *Apply* graphical construction techniques for process equipment.
- LO2: Develop 3-D models using a CAD package.
- LO3: *Apply* software tools to develop, simulate, and analyse mathematical models for reactors, separators, and heat exchangers.
- LO4: *Understand* the concepts and techniques relevant to applications in chemical and process engineering.
- LO5: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices II module covers the practical aspects in applications of Chemical and Process Engineering (CH2151, CH2180, and CH4501) and provides in-depth learning for engineering drawing and computer aided chemical engineering.

Engineering Drawing and Computer Aided Learning

Complete engineering drawing of process equipment using computer aided drafting software (SOLIDWORKS®).

Property analysis of chemical system using Aspen Plus®; Thermodynamic property methods, property analysis of pure components/binary/mixtures, VLE curves x-y diagram, ternary maps.

Process flow sheeting, simulation of equipment models and simulation of chemical process using Aspen Plus®; Development of mathematical models for reactors, separators, and heat exchangers (Excel and MATLAB®).

Laboratory Experiments (8 Sessions)

(1) Pressure drops in a packed bed and fluidized bed. (2) Filter press/Demonstration on centrifuge, cyclone, coagulation, and sieve analysis. (3) Pressure-drop over a bubble cap plate; H.E.T.P Distillation, (4) Soxhlet Extraction. (5) Adsorption. (6) Evaporation. (7) Batch reactor/ Plug flow reactor. (8) Determination of specific rate constant for first order hydrolysis of ethyl acetate.

Semester V

Semester	Code		Module Title	C/E/O	GPA / NGPA
5	CH4045	I	Process Dynamics and Control	С	GPA
Hour	s/Week		-	Eval	uation %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
2	2	3.0	Prerequisites: CS1033, MA2014, MA3024 Corequisites: CH3034, CH3150	40	60
Learning O	utcomes	<u> </u>	/		
After compl	eting this modul	le, students	should be able to,		
•	LO1: Describe	the behavior	ur of 1st, 2nd and higher order dynamical	systems.	
			ical systems using mathematical tools such		ce
	transforms etc.	2		1	
		ple feedbac	k loops using PID controllers and develo	pment of c	ontrol
	modules.		1 0		
•	LO4: Implemen	t various PI	D tuning methods for controllers.		
	-		feedback controllers with various control	methods to	eliminate
	disturbances.				
•	LO6: Implemen	t and test ou	It their controller designs by using simula	tions.	
Syllabus Ou		<u>, and test of</u>			
	to Process Dyna	mics & Cont	rol		
Understand so An Introduct Transfer func Transfer Func Lag Models. Introduction Development Disturbances, PID Controll Closed-Loop (DS) method, Feedback Des Cascade and Cascade-Cont Structure, Cont Various cont Ratio Control Frequency-R Bode and Ny Robustness. Control-Loop The General I Pairings. Plantwide Co	Dynamic systems econd-order under tion, Definition of ction Analysis of to Feedback Con of Control Block Open-Loop Unst- ler Tuning Oscillation-Basec , Internal Model sign for Processes Feed-Forward C trol Analysis, Ca mbined Feed-Forv rol methods and , Selective and Ov Response Analysis (quist Plots, Effe p Interaction Pairing Problem, 7 ontrol	-damped behaves ansformatio ansformatio the Laplace of First-Order S able Systems. Diagrams, R able Systems. Uning, Tur Control (IMC with a Time of Control uscade-Control vard and Case control strue cerride Control sct of Process The Relative of	Transform, Poles and zeros, Time constant and systems, Responses of First-Order Systems. In Response to Setpoint Changes, Effect of Tunir hing Rules for First Order + Dead Time Proce (2), IMC-Based Feedback Design for Delay-F Delay, IMC-Based PID Controller Design for ol Design, Feed-Forward Control, Feed-For- cade. ctures ol, Split-Range Control. s Parameters on Bode and Nyquist Plots, B- Gain Array, RGA and Sensitivity, Using the F	resonance, f ntegrating Pr ng Parameter esses. The D Free Process Unstable Pro ward Contro ode and Ny	Zero dynamics. rocesses, Lead- rs, Response to virect Synthesis es, IMC-Based ocesses. ol in the IMC quist Stability,
Fuzzy logic c Identification	ontrol system	zy subset conf	e, The Control and Optimization Hierarchy. Figuration, obtaining membership function, Fu: uzzification.	zzy rule base	configuration,

Semester	Code		Module Title	C/E/O	GPA / NGPA
5	CH3045	Plant Safe	ety, Health and Environment	С	GPA
Hours	s/Week	a u		Evalua	tion %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
7/2	1	4.0	None	30	70
Learning (Dutcomes				
Syllabus O Introduction Toxicity and Fire and ex Safety stra Inherent safe Identification HAZOP, ex Personal p Noise and of Plant layou	ccessful compl LO1: Describ industry. LO2: Unders. LO3: Describ LO4: Explain LO5: Discuss modification framework. LO6: Identify LO7: Apply a LO8: Analyse vulline on to plant sat ad chemical sat splosion hazar tegies: fety, active, pa ion of process yent tree, fault rotective equi ventilation, th at design for s	be basic principles tand environmenta per environmental p principles of sust basics of safety i and basics. of inci- hazards in chemi ppropriate technic e and evaluate haz fety, health, and on fety rds ssive, and procedu hazards, princip tree pment, Ergonom afety, hazardous	n plant site layout design, operation, dent reporting, investigation and ma cal and process industry. jues or measures to avoid or reduce h ards in chemical and process industr environment ural safety bles of risk assessment and safety m ics, Industrial diseases area classification, safety in plant	maintenance a nagement and nazards. y.	and
SHE incide Toxic relea Legal back Health and Precaution Introduction liquid, gase Introduction Environme	ent and near r ase and disper aground: safety at work ary principle, on to environn eous, and solid on to environn ent related int ental Manage	sion , responsible care nental pollution: pollutants, their s nental impacts ernational agree ment Systems	e sources, and characteristics	aan factors in	safety
SHE incide Toxic relea Legal back Health and Precaution Introductio liquid, gase Introductio Environme Principles	ent and near r ase and disper aground: safety at work ary principle, on to environn eous, and solid on to environn ent related int ental Manager of engineering	niss reporting, in sion , responsible care nental pollution: pollutants, their s nental impacts ernational agree	e sources, and characteristics	aan factors in	safety

Semester	Code		Module Title	C/E/O	GPA / NGPA
5	CH3034	Pro	cess Equipment Design	С	GPA
Hours	/Week	Charles 1.	Provide the Constant of the	Evaluati	on %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
3	2	4.0	CH1044, CH1051, CH2015, CH2210	40	60
Learning C	Outcomes		•		

After completing this module, student should be able to:

- LO1: *Understand* process equipment design philosophy, design codes, and standard formulae for economical and safe design of process equipment and auxiliaries
- LO2: *Explain* the operational principals of process measurement and instrumentation
- LO3: *Select* the design preliminaries and considerations, and auxiliaries for vertical and horizontal process vessels for safe design
- LO4: *Apply* mechanical design fundamentals for estimation of stresses in cylindrical process vessels, spherical and conical shells, and end closures
- LO5: *Calculate* safe thicknesses and requirements for compensation in openings for process equipment
- LO6: *Design* tall towers under combine loads and process vessels under external pressure to avoid their collapse
- LO7: *Apply* knowledge in Principals of Fluid Dynamics, Thermodynamics, and Heat transfer for economical and safe design of piping systems, turbines and compressors, and heat exchangers

Syllabus Outline

Mechanical design fundamentals

Bending moment and shear force, Bending stresses, Deflection, Buckling, Torsion, Impact loading and combined loading, General two-dimensional stress system, Principal stress and strain, Plain strain, Theories of failure, Analysis on failure criteria

Types of cylindrical shells and pressure vessels

Thin-walled cylinderical shells, Thin-walled spherical and conical shells, Volume changes of shells, Thick-walled cylinderical shells, Internal and external pressure vessels, end closures (flat, ellipsoidal, torispherical, and toriconical covers)

Mechanical design preliminaries and considerations for process equipment

Process equipment design codes, Structure of ASME boiler and pressure vessel codes, Classification of process equipment, Design pressure, Design temperature, Material Selection for process equipment, Design stress, Methodology, and procedure for mechanical design of process equipment, Welding types and efficiency, Safe design factors and allowances, Process equipment fabrication techniques

Internal Pressure Vessels Design

Mechanical design calculations for Thin walled and Thick-walled internal pressure vessels, Design of process equipment supports, Stiffener rings and auxiliaries, Compensation for openings, Anchor bolts, Vessel Installation

External Pressure Vessel Design

Mechanical design calculations for Thin walled and Thick-walled external pressure vessels Design for combined loading on vessels and columns

Design calculations for pressure vessels under combined loadings, such as weight loads, wind loads, external loads due to varios factors

Mechanical design of pipes, turbo machines, and heat exchangers

Pipe schedule number, Safe pipe thickness calculations and economic pipe diameter, Mechanical design calculations for pumping requirements, Mechanical design awareness for gas turbines/compressors,

TEMA design standards for tubular heat exchangers, Mechanical design awareness for heat exchangers **Process measurement and instrumentation**

Measurement techniques and intrumentation for temperature, pressure, level, flow, and mass/force parameters in process equipment operations

Semester	Code		Module Title	C/E/O	GPA / NGPA
5	CH3055	Ener	gy Systems Engineering	С	GPA
Hours	s/Week			Evalua	tion %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
2	2	3.0	CH1051, CH1044, CH1061, CH2015	40	60
Learning (Outcomes				
After comp	LO1: Unders conservation LO2: Analyz LO3: Identify LO4: Apply 1 LO5: Analyz	e combustion in st v losses and evaluate vecovery methods e energy systems	should be able to: roblem and identify the need for energy team and heating systems. ate the performance of energy systems to the energy systems. by performing energy audits. ronmental, and economic feasibility of	3.	
Syllabus O		ie teenneui, en in		energy proje	• • • •
industrial e Combustio Fuel types, Industrial System des System and Boiler subs boiler perfo opportuniti improveme Steam dist performand	nergy systems on in steam ar Combustion t steam system scription (boil subsystems p <i>system</i> - Boiler ormance (boile es (combustio ent, control imp <i>ribution and</i> the (steam lead ce improvement	nd heating system heory, Efficient co s lers, steam distrib performance defini r performance ana r load, boiler desig n efficiency impro- provement). <i>condensate retur</i>	ombustion, Combustion equipment. oution system, steam end users, con	densate retur osses), Facto erformance in ecovery, wate s, Factors af	rn system), rs affecting provement er treatment fecting the
methods, lo Refrigerat Chilling a compressio analysis, po lift/superhe Compresso System des Leakage de Industrial Descriptior industrial Performance electric mo	bases), Energy- ion systems and chilled s erformance im- eat) ed air systems acription, Perfor- termination (1 electric powe a of industria electric powe be improveme tor drives).	-saving and recover torage, freezing, systems, performa provement oppor somance analysis oad-unload test, p r systems I electric power or systems, Perfor	es, Kilns), Operation, Performance every opportunities. deep freezing, cold storage, dee ance definitions, factors affecting pe tunities (maintenance, control, operat (performance indicators, performance ump-up test), Performance improvement systems, Basic terms, Tariff system ormance assessment of industrial e load management, demand control, p	p cold stor rformance, p ional - load/t e graph), Mea ent opportuni n, Main com electric powe	age, vapor erformance emperature asurements, ties ponents of er systems,
Energy ma Main comp energy proj	ponents, goals	, and phases of e	energy auditing, Economic and envir	ronmental ev	aluation of

Semester	Code		Module Title	C/E/O	GPA / NGPA
5	CH3150	Chemical Pr	ocess Synthesis and Integration	С	GPA
Hours	s/Week	a 1		Evalua	tion %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
2	2	3.0	CH1061, CH1051, CH2015, CH2180, CH4501	40	60
Learning	Outcomes				
On su	ccessful comp	letion of this mod	ule, students are able to:		
•	LO1: Descrit	be and Distinguisl	<i>i</i> process synthesis methods.		
•	LO2: Condu	ct process econom	ics.		
•	LO3: Unders	stand reactor and s	eparator performances.		
•	LO4: Select	reaction and separ	ation systems.		
•	LO5: Apply	oinch analysis to e	nergy and capital targeting.		
•	LO6: Evalua	te Utility Systems	and heat integration of unit operation	ons.	
•	LO7: Design	and optimize hea	t recovery networks		
Syllabus C	Jutline	-	-		
Process ec Capital and Selection of Reaction, a recycling ro Introducti Data Extra principles, Utility sele Multiple ut Heat Exch Types of ho Design HE Combined Introductio Heat integ Furnace eff Heat Integ	I operating cos of reactor and separation and ecycle with pu on to Pinch A action, heat re Grid diagram, ection ilities, Grand anger Netwon eat exchangers N using pinch Heat and Po n to heat pump ration of furr ficiency, Capit gration of read ic and Exother	sts, Simple econom of separator, op d recycle systems rging. .nalysis ecovery, Energy a Threshold proble Composite Curves rk Design s, Number of heat principles Loop E wer generations ps and engines into ace, cal energy trade of ctors rmic Reactors.	erating conditions, and configurat for continuous and batch proces and capital cost targeting, Probler	sses. Function n Table algor ch temperature get area enerative heat	ithm, Pinch

Intake	2020	Specialisation	Chemical and Process Engineerin	g	
Semester	Code		Module Title	C/E/O	GPA / NGPA
5,6	CH3880	Е	ngineer and Society	С	GPA
	/Week	Credits	Prerequisites / Corequisites	Evalua	ation %
Lecture	Lab/Tute			CA	WE
1	4	3.0	None	100	0
Learning	Outcomes			1	
•	LO1: Demo its social co LO2: Demo the society LO3: Practa understandi LO4: Identi environmen LO5: Interp environmen LO6: Ability LO7: Apply	ntext <i>nstrate</i> an underst <i>ise</i> with integrity i ng of ethical issue <i>fy and apply</i> appro- tal hazards/ conse <i>ret</i> the engineers' tal conditions targ <i>y</i> to critique techno-	anding of the responsibilities of the anding of the health, safety and env n the social context of the engineer s opriate tools/ techniques for the eva quences and risk assessment role in ethically assuring healthy, s geting the overall sustainable develo ology d skills gained of towards building	vironmental rec ing profession luation of heal afe and excelled opment of the s	quirements of with an th, safety and ent ociety
• Intro other	indicative ar duction to En	gineering Ethics -	ions may vary depending on the sp Historical context, moral responsit nunity standards and personal respo	oility, IESL co	
Ethic profe confl ethic	es in the Socie essions, social icting scenar al behaviour	responsibility, et ios and problems i	Respect for social & cultural value hical decisions as individuals, ident n the field of engineering, leading o	ifying ethical i organizations to	ssues, owards
and i	nclusive of al	l users, and are as	suring that engineering products and free as possible from discriminatio eering practice – acts, ordinances ar	on and bias	accessible
 Healt mana Healt 	th & Safety – agement th & Safety N	Definitions, areas Ianagement – Ma	s and hazard identification, risk asse	essment, evalua	
• Envi: overv intro	ronment – ma view of contro duction to env	naging the genera		waste in indus	
 Engin 	neers' respon	sibility in sustaina stry specific)			

Industrial Training

Semester	Code		Module Title	C/E/O	GPA / NGPA
Industrial Training	CH3994	Ι	ndustrial Training	С	NGPA
Hour	s/Week	a lit		Evalu	uation %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
-	-	6.0	None	100	0
Learning After comp	bleting this mo LO1: Apply I LO2: Unders LO3: Design techniques. LO4: Develo	<i>stand</i> industrial sy solutions for indu <i>p</i> soft skills and p	Ild be able to, inciples of chemical and process er stems, procedures, practices, and p istrial/engineering problems using rofessional attitudes required for ir Il, and environmental responsibiliti	rofessional e modern tools	s and ronment.
Process a conservation	e and princip nalysis, Proc on, Health-Saf	ess plant opera ety-Environmenta	nd process engineering tions/maintenance/troubleshooting Il aspects of chemical processes, F systems, Quality control/assuranc	Process instru	umentation and

software platforms for process control systems, Quality control/assurance and monitoring process parameters for process improvement/development, Process diagrams and engineering drawings. Industrial systems, procedures, and practices

Administration/financial/general management/logistics/HSE/legal practices in an industrial organization, Practices of professional ethics/personal relations, Organizational practices for process efficiency improvement, Regulations and standards.

Semester VI

Semester	Code		Module Title	C/E/O	GPA / NGPA					
6, 7, 8	CH4751	R	Research Project	С	GPA					
Hour	Hours/Week Credits Prerequisites / Corequisites									
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE					
-	6	3.0	None	100	0					
Learning O	utcomes									
• •	LO2: Develop 1 LO3: Develop 0 LO4: Analyze e LO5: Produce 1	new experimental successful to the second se	nd identify research gaps/problem et ups/ models/strategies. d self-integrity under challenging ling results and draw conclusions. s a publishable material.	environme	nt.					
Literatur Research	•	problem identifica lopment	tion							
Methodo	logy developm	ent and experimen	tal work/modeling and simulati	on						
Data ana	lysis and interj	pretation								
Reporting										

Semester	Code		Module Title	C/E/O	GPA / NGPA
6	CH3170	La	boratory Practices III	С	GPA
Hours	s/Week	C l'tr	Description (Constitution	Evalua	ation %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
-	6	3.0	CH1051, CH2170, CH2270,	100	0
			CH2210, CH3045, CH3055,		
			CH4045		

Learning Outcomes

After completing this module, the student should be able to,

- LO1: *Develop* detailed drawings of process equipment.
- LO2: Construct P&I diagrams for chemical equipment and processes.
- LO3: Analyse chemical processes using process simulation tools.
- LO4: *Develop* numerical models of a process and build computer models for simulations by using computer aided tools.
- LO5: *Employ* advanced concepts and techniques relevant to applications in chemical and process engineering.
- LO6: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices III module covers the application and design aspects in Chemical and Process Engineering (CH1051, CH2210, CH3045, CH3055, and CH4045) and provides in-depth learning for engineering drawing and advanced computer aided chemical engineering.

Engineering Drawing and Computer Aided Learning.

Detailed drawing of process equipment with auxiliaries (assembly drawing) using SOLIDWORKS®. Development of P&ID using suitable software packages.

Advanced process analysis tools in Aspen Plus® (design specifications, calculator blocks, sensitivity analysis, optimization tools).

Challenge based project work.

Development of a numerical model of given process and analyse system dynamics by simulations. Develop suitable control structure to tight control of quality parameters and eliminate disturbances. Development of SIMULINK® and LabVIEW models to simulate the control structure to understand control behaviour.

Laboratory Experiments (8 Sessions).

(1) Rankine cycle, Steam analysis. (2) Corrosion (3) Identification of Polymers (4) Determination of properties of petroleum (flash point, fire point, aniline point, etc.). (5) COD, TS, TDS, TSS, and VSS of wastewater. (6) Determination of DO, residual chlorine, alkalinity, and pH. (7) Tuning PID controller for air heater (8) Introduction of ladder programming to control process engineering applications by PLC.

Semester VII

Semester	Code		Module Title	C/E/O	GPA / NGPA
7	CH4016	Compre	ehensive Design Project I	С	GPA
	s/Week	Credits	Prerequisites / Corequisites	Evalu	uation %
Lecture	Lab/Tutes	Creuits	Trerequisites / Corequisites	CA	WE
-	8	4.0	None	100	0
Learning	Outcomes				
• • •	LO2: Conduc LO3: Apply C LO4: Develo LO5: Perform	et a design project chemical synthesis p process flow dia n sustainability ar	problem-solving skills with a significant degree of engine s and process synthesis techniques agram and perform mass and energe halysis for a process plant ork, technical reporting, and preser	y balance	tence
Syllabus (Dutline				
Market A					
	the suitable pl	· ·			
	Synthesis of t		(*, • 1 11 , • 1 •		
		vay based on gros	s profits using bulk material prices		
Process Sy					4hh :-
		mposition, and ph	nits, identify other required units	to eliminate	the changes in
	ow diagram:	inposition, and ph	lase		
		ntegrated unit one	erations ensuring energy recovery,	develop the r	rocess flow
diagram	ne tusks while	integrated unit opt	stations ensuring energy receivery,	develop die p	1000033 110 11
0	nd Energy Ba	alance:			
Select the u	unit basis and t	he system bounda	ary, Detailed material and energy b	alance for the	e process,
Material ar	nd Energy flow	sheet			
		nt of the process			
			vironmental impacts assessment, I		
	tainability: Ris	sk Assessment (e	.g., Fault-tree analysis), Safety an	d Health As	sessment (e.g.
HAZOP)	Quatain-1:1:	Coat har -fit - 1			
ECONOMIC		Cost-benefit anal	ys1s		
	on and Dlan4	lovonte			
Site selecti			nd Transportation Labor Infrastr	icture faciliti	es Utilities
Site selecti Site selecti	on: Based on H	Raw materials, La	nd, Transportation, Labor, Infrastruent, Sustainability requirements	ucture faciliti	es, Utilities,

Hours/Week Credits Prerequisites / Corequisites Evaluation % Lecture Lab/Tutes 3.0 CH1061, CH4501 40 60 2 2 3.0 CH1061, CH4501 40 60 Learning Outcomes After completing this module, the student should be able to, • LO1: Understand the basic concepts of biofuels and biorefinery. • LO2: Recognize the applicability of chemical, biological and physical process technolog in conversion of biomass to biofuels and value-added chemicals. • LO3: Compare technical and economic feasibilities among technologies. • LO4: Select suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. • LO5: Appraise suitable modular process systems for selected conversion technologies. LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasificatio		Code		Module Title	C/E/O	GPA / NGPA
Lecture Lab/Tutes Creatilis Prerequisites / Corequisites CA Will 2 2 3.0 CH1061, CH4501 40 60 Learning Outcomes After completing this module, the student should be able to, • LO1: Understand the basic concepts of biofuels and biorefinery. • LO2: Recognize the applicability of chemical, biological and physical process technolog in conversion of biomass to biofuels and value-added chemicals. • LO3: Compare technical and economic feasibilities among technologies. • LO4: Select suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. • LO5: Appraise suitable modular process systems for selected conversion technologies. • LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Image: Creating the process in biorefinery Medstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyroi and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid,	Hours	CH4120	Biof	fuels and Biorefineries	E	GPA
Lecture Lab/Tutes Leture Leture CA Wi 2 2 3.0 CH1061, CH4501 40 60 Learning Outcomes After completing this module, the student should be able to, Image: Comparison of biomass to biofuels and biorefinery. Image: Comparison of biomass to biofuels and value-added chemicals. Image: LO3: Compare technical and economic feasibilities among technologies. Image: Compare technical and economic feasibilities among technologies. Image: LO3: Compare technical and economic feasibilities among technologies. Image: Compare technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. Image: LO6: Design modular process systems for selected conversion technologies. Image: Compare technologies of trending biomass to biofuel/biochemicals or biomaterials, conversions. Image: LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biod Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Lique		s/Week	Credita	Promognicitos / Concentration	Evalu	ation %
 Learning Outcomes After completing this module, the student should be able to, LO1: Understand the basic concepts of biofuels and biorefinery. LO2: Recognize the applicability of chemical, biological and physical process technolog in conversion of biomass to biofuels and value-added chemicals. LO3: Compare technical and economic feasibilities among technologies. LO4: Select suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: Appraise suitable modular process systems for selected conversion technologies. LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels 	Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE
 After completing this module, the student should be able to, LO1: Understand the basic concepts of biofuels and biorefinery. LO2: Recognize the applicability of chemical, biological and physical process technolog in conversion of biomass to biofuels and value-added chemicals. LO3: Compare technical and economic feasibilities among technologies. LO4: Select suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: Appraise suitable modular process systems for selected conversion technologies. LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels 	2	2	3.0	CH1061, CH4501	40	60
 LO1: Understand the basic concepts of biofuels and biorefinery. LO2: Recognize the applicability of chemical, biological and physical process technolog in conversion of biomass to biofuels and value-added chemicals. LO3: Compare technical and economic feasibilities among technologies. LO4: Select suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: Appraise suitable modular process systems for selected conversion technologies. LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels						
 LO2: <i>Recognize</i> the applicability of chemical, biological and physical process technolog in conversion of biomass to biofuels and value-added chemicals. LO3: <i>Compare</i> technical and economic feasibilities among technologies. LO4: <i>Select</i> suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: <i>Appraise</i> suitable modular process systems for selected conversion technologies. LO6: <i>Design</i> modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	After comp	leting this mo	dule, the student s	should be able to,		
 in conversion of biomass to biofuels and value-added chemicals. LO3: <i>Compare</i> technical and economic feasibilities among technologies. LO4: <i>Select</i> suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: <i>Appraise</i> suitable modular process systems for selected conversion technologies. LO6: <i>Design</i> modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	•	LO1: Unders	stand the basic cor	ncepts of biofuels and biorefinery.		
 LO3: <i>Compare</i> technical and economic feasibilities among technologies. LO4: <i>Select</i> suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: <i>Appraise</i> suitable modular process systems for selected conversion technologies. LO6: <i>Design</i> modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	•	LO2: Recogn	ize the applicabili	ity of chemical, biological and phys	sical process to	echnologies
 LO4: Select suitable technologies of trending biomass to biofuel/biochemicals or biomaterials conversions. LO5: Appraise suitable modular process systems for selected conversion technologies. LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels		in conversion	n of biomass to bio	ofuels and value-added chemicals.		
 biomaterials conversions. LO5: <i>Appraise</i> suitable modular process systems for selected conversion technologies. LO6: <i>Design</i> modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	•	LO3: Compa	re technical and e	conomic feasibilities among techno	ologies.	
 LO5: Appraise suitable modular process systems for selected conversion technologies. LO6: Design modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	•	LO4: Select	suitable technolog	ies of trending biomass to biofuel/b	oiochemicals o	or
 LO6: <i>Design</i> modular process systems for biorefinery. Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biof Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels 		biomaterials	conversions.			
Syllabus Outline Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biol Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	•	LO5: Apprai	se suitable modula	ar process systems for selected conv	version techno	ologies.
Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biol Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	•	LO6: Design	modular process	systems for biorefinery.		
Introduction Definition, objective of biorefinery, feedstock classification, and composition, product range – Biol Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels						
Definition, objective of biorefinery, feedstock classification, and composition, product range – Biod Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels						
Biomaterials, Biopolymers, platform chemicals and speciality chemicals, limitations, and impacts. Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels						
Assessment on site-specific feedstock availability and identify potentials among different biomasses Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels		objective of h				
Feedstock for biorefinery Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels						
 Physical and Thermochemical processes in biorefinery Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels 	Biomateria	ls, Biopolyme	rs, platform chem	icals and speciality chemicals, limit	ations, and in	npacts.
Mechanical crushing, Ultrasound treatment, Microwave treatment, Liquefaction, Torrefaction, Pyrol and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	Biomateria Assessmen	ls, Biopolyme t on site-speci	rs, platform chem fic feedstock avail	icals and speciality chemicals, limit	ations, and in	npacts.
and Gasification Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	Biomateria Assessmen Feedstock	ls, Biopolyme t on site-speci for biorefine	rs, platform chem fic feedstock avail y	icals and speciality chemicals, limit lability and identify potentials amor	ations, and in	npacts.
Chemical and Biological processes in biorefinery Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	Biomateria Assessmen Feedstock Physical a	ls, Biopolyme t on site-speci for biorefine nd Thermoch	rs, platform chemi fic feedstock avail ry emical processes	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery	ations, and in ng different bi	npacts. omasses.
Hydrothermal, Acid, and alkali pre-treatments/Catalysis /Hydrotreating/Anaerobic reactions Characterization of properties of biofuels	Biomateria Assessmen Feedstock Physical an Mechanica	ls, Biopolyme t on site-speci for biorefine nd Thermoch l crushing, Ult	rs, platform chemi fic feedstock avail ry emical processes	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery	ations, and in ng different bi	npacts. omasses.
Characterization of properties of biofuels	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific	ls, Biopolyme t on site-speci for biorefine nd Thermoch l crushing, Ult ation	rs, platform chemi fic feedstock avail cy emical processes rasound treatment	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefactio	ations, and in ng different bi	npacts. omasses.
	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a	ls, Biopolyme t on site-speci for biorefine nd Thermoch l crushing, Ult ation and Biologica	rs, platform chemi fic feedstock avail ry emical processes rasound treatment l processes in bio	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery	ations, and in ng different bi on, Torrefactio	npacts. omasses. on, Pyrolysi
	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr	Is, Biopolyme t on site-speci for biorefiner nd Thermoch l crushing, Ult ation and Biologica nal, Acid, and	rs, platform chemi fic feedstock avail ry emical processes rasound treatment l processes in bio alkali pre-treatme	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer	ations, and in ng different bi on, Torrefactio	npacts. omasses. on, Pyrolysi
Characterization of other products	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr Character	Is, Biopolyme t on site-speci for biorefiner and Thermoch l crushing, Ult ation and Biologica nal, Acid, and ization of pro	rs, platform chemi fic feedstock avail ry emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer	ations, and in ng different bi on, Torrefactio	npacts. omasses. on, Pyrolysi
	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr Character Calorific va	Is, Biopolyme t on site-speci for biorefiner and Thermoch I crushing, Ult ation and Biologica nal, Acid, and ization of pro alues, fuel spe	rs, platform chemi fic feedstock avail ry emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel cifications, proper	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer	ations, and in ng different bi on, Torrefactio	npacts. omasses. on, Pyrolysi
Matching biochemicals and biomaterials for industries Techno-economic analysis of technologies, processes, and product range of biorefin	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr Character Calorific va Character	Is, Biopolyme t on site-speci for biorefiner and Thermoch I crushing, Ult ation and Biologica nal, Acid, and ization of pro alues, fuel spe ization of oth	rs, platform chemi fic feedstock avail ry emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel cifications, proper er products	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer ls ties of blends	ations, and in ng different bi on, Torrefactio	npacts. omasses. on, Pyrolysi
Environmental management of biorefineries	Biomateria Assessmen Feedstock Physical an Mechanical and Gasific Chemical a Hydrotherr Character Calorific va Character Matching b	Is, Biopolyme t on site-speci for biorefiner and Thermoch l crushing, Ult cation and Biologica nal, Acid, and ization of pro alues, fuel spe ization of oth iochemicals a	rs, platform chemi fic feedstock avail ry emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel cifications, proper er products nd biomaterials for	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer ls ties of blends or industries	ations, and in ng different bi on, Torrefactions obic reactions	npacts. omasses. on, Pyrolysi
Selection of feasible technologies, processes, and product range for Sri Lankan scenario:	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr Character Calorific va Character Matching b Techno-ec	Is, Biopolyme t on site-speci for biorefiner and Thermoch I crushing, Ulf and Biologica mal, Acid, and ization of pro alues, fuel spe ization of oth viochemicals a onomic anal	rs, platform chemi fic feedstock avail y emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel cifications, proper er products nd biomaterials fo ysis of technol	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer ties of blends or industries logies, processes, and product	ations, and in ng different bi on, Torrefactions obic reactions	npacts. omasses. on, Pyrolysi
	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr Character Calorific va Character Matching b Techno-ec Environmo	Is, Biopolyme t on site-speci for biorefiner and Thermoch I crushing, Ulf and Biologica mal, Acid, and ization of pro alues, fuel spe ization of oth viochemicals a onomic anal ental manage	rs, platform chemi fic feedstock avail y emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel cifications, proper er products nd biomaterials fo ysis of technol ment of biorefine	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer ties of blends or industries logies, processes, and product eries	ations, and in ng different bi on, Torrefactio obic reactions c range of	npacts. omasses. on, Pyrolysi s biorefiner
Case-based unit	Biomateria Assessmen Feedstock Physical an Mechanica and Gasific Chemical a Hydrotherr Character Character Matching b Techno-ec Environmo Selection o	Is, Biopolyme t on site-speci for biorefiner and Thermoch l crushing, Ultration and Biologica mal, Acid, and ization of pro alues, fuel spe ization of oth viochemicals a onomic anal ental manage of feasible tecl	rs, platform chemi fic feedstock avail y emical processes rasound treatment l processes in bio alkali pre-treatme perties of biofuel cifications, proper er products nd biomaterials fo ysis of technol ment of biorefine	icals and speciality chemicals, limit lability and identify potentials amor in biorefinery t, Microwave treatment, Liquefaction prefinery ents/Catalysis /Hydrotreating/Anaer ties of blends or industries logies, processes, and product eries	ations, and in ng different bi on, Torrefactio obic reactions c range of	npacts. omasses. on, Pyrolysi s biorefiner

7 CH4130 Process Optimization E GPA Hours/Week Credits Prerequisites / Corequisites Evaluation % 2 2 3.0 CS1033, MA2014, MA3024, CH3034, CH4045, CH2180, CH1044, CH2015, CH4501 40 60 Learning Outcomes After completing this module, students should be able to, Example to the nature and organization of optimization problems 60 After completing this module, students should be able to, E.O3: Understand optimization theory and methods E.O3: Understand optimization theory and methods E.O3: Understand optimization and translates these concepts into computational methods and algorithms E.O4: Construct process engineering models for optimization E.O6: Apply optimization techniques to chemical and process engineering Syllabus Outline E GPA Formulating the problem Itenative for optimization Heatures of Optimization of budies, Efficiency Objective function, The Time Value of Money in Objective Functions, Measures of Profitability. Optimization flower function Efficiency Objective Function, The Time Value of Money in Objective Functions, Measures of Profitability. Optimization of the Objective Function in Terms of Its Quadratic. Optimization of the Objective Function in Terms of Its Quadratic. Optimization of optim	Semester	Code		Module Title	C/E/O	GPA / NGPA
Lecture Lab/Tutes Creatis Prerequisites / Corquistes CA WE 2 2 3.0 CS1033, MA2014, MA3024, 40 60 CH3034, CH4045, CH2180, CH3034, CH4045, CH2180, CH1044, CH2015, CH4501 40 60 Learning Outcomes CH1044, CH2015, CH4501 40 60 Learning Outcomes CH1044, CH2015, CH4501 60 60 Learning Outcomes LO1: Describe the nature and organization of optimization problems 60 60 LO2: Understand optimization theory and methods LO2: Understand optimization and translates these concepts into computational methods and algorithms LO4: Construct process engineering models for optimization LO5: Formulation of the objective functions LO6: Apply optimization techniques to chemical and process engineering Syllabus Outline Formulating the problem Beatures of Optimization problems. Coestruct of Models, Degrees of Freedom, Inequality and Equality Constraints in Models. Formulation of the objective function	7	CH4130	Pro	cess Optimization	Е	
Lecture Lab/Tutes Creatis Prerequisites / Corquistes CA WE 2 2 3.0 CS1033, MA2014, MA3024, 40 60 CH3034, CH4045, CH2180, CH3034, CH4045, CH2180, CH1044, CH2015, CH4501 40 60 Learning Outcomes CH1044, CH2015, CH4501 40 60 Learning Outcomes CH1044, CH2015, CH4501 60 60 Learning Outcomes LO1: Describe the nature and organization of optimization problems 60 60 LO2: Understand optimization theory and methods LO2: Understand optimization and translates these concepts into computational methods and algorithms LO4: Construct process engineering models for optimization LO5: Formulation of the objective functions LO6: Apply optimization techniques to chemical and process engineering Syllabus Outline Formulating the problem Beatures of Optimization problems. Coestruct of Models, Degrees of Freedom, Inequality and Equality Constraints in Models. Formulation of the objective function	Hours	s/Week	<i>a</i> n		Evalua	ation %
CH3034, CH4045, CH2180, CH1044, CH2015, CH4501 Learning Outcomes After completing this module, students should be able to, I. DOI: Describe the nature and organization of optimization problems I. LO2: Understand optimization theory and methods I. LO3: Identify techniques of optimization and translates these concepts into computational methods and algorithms I. LO4: Construct process engineering models for optimization I. LO5: Formulation of the objective functions I. LO6: Apply optimization techniques to chemical and process engineering Syllabus Outline Formulating the problem the nature and organization of optimization problems, Scope and Hierarchy of Optimization, The Essential Features of Optimization Problems. Developing models for optimization Classification of Models, Degrees of Freedom, Inequality and Equality Constraints in Models. Formulation of the objective function Economic Objective Functions, Efficiency Objective function, The Time Value of Money in Objective Functions, Measures of Profitability. Optimization of unconstrained functions: one-dimensional search, Numerical Methods for Optimizing a Function of the Objective Function in Terms of Its Quadratic. Optimization of unconstrained functions: one-dimensional search, Numerical Methods for Optimizing a Function of Ne Variable, Scanning and Bracketing Procedures, Newton and Quasi-Newton Methods of Unidimensional Search, Poly			Credits	Prerequisites / Corequisites	-	
 After completing this module, students should be able to, LO1: Describe the nature and organization of optimization problems LO2: Understand optimization theory and methods LO3: Identify techniques of optimization and translates these concepts into computational methods and algorithms LO4: Construct process engineering models for optimization LO5: Formulation of the objective functions LO6: Apply optimization techniques to chemical and process engineering Syllabus Outline Formulating the problem the nature and organization of optimization problems, Scope and Hierarchy of Optimization, The Essential Features of Optimization Problems. Developing models for optimization Classification of the objective function Economic Objective Functions, Efficiency Objective function, The Time Value of Money in Objective Functions, Measures of Profitability. Optimization theory and methods Basic concepts of optimization: Continuity of Functions, NLP Problem Statement, Convexity and Its Applications of Unconstrained functions: one-dimensional search, Numerical Methods for Optimizing a Function of Unconstrained functions: one-dimensional search, Numerical Methods for Optimizing a Function of Nethods, Quasi-Newton Methods. Unconstrained multivariable optimization: Methods Using Function Values Only, Methods That Use First Derivative, Newton's Method, Quasi-Newton Methods. Linear programming (LP) and applications: Geometry of Linear Programs, Basic Linear Programming Definitions and Results, Simplex Algorithm, Sensitivity Analysis. Nonlinear programming with constraints: Direct substitution, First-Order Necessary Conditions for a	2	2	3.0	CH3034, CH4045, CH2180,	40	60
 LO1: Describe the nature and organization of optimization problems LO2: Understand optimization theory and methods LO3: Identify techniques of optimization and translates these concepts into computational methods and algorithms LO4: Construct process engineering models for optimization LO5: Formulation of the objective functions LO6: Apply optimization techniques to chemical and process engineering Syllabus Outline Formulating the problem the nature and organization of optimization problems, Scope and Hierarchy of Optimization, The Essential Features of Optimization Problems. Developing models for optimization Classification of Models, Degrees of Freedom, Inequality and Equality Constraints in Models. Formulation of the objective function Economic Objective Functions, Efficiency Objective function, The Time Value of Money in Objective Functions, Measures of Profitability. Optimization theory and methods Basic concepts of optimization: Continuity of Functions, NLP Problem Statement, Convexity and Its Applications, Interpretation of the Objective Function in Terms of Its Quadratic. Optimization of our constrained functions: one-dimensional search, Numerical Methods for Optimizing a Function of One Variable, Scanning and Bracketing Procedures, Newton and Quasi-Newton Methods of Unidimensional Search, Polynomial Approximation Methods. Unconstrained multivariable optimization: Methods Using Function Values Only, Methods That Use First Derivative, Newton's Method, Quasi-Newton Methods. Linear programming (LP) and applications: Geometry of Linear Programs, Basic Linear Programming Definitions and Results, Simplex Algorithm, Sensitivity Analysis. Nonlinear programming with constraints: Direct substitution, First-Order Necessary Conditions for a	Learning Ou	itcomes				
Successive Linear Programming, The Generalized Reduced Gradient Method, Relative Advantages and Disadvantages of NLP Methods Mixed-integer programming: Branch-and-Bound Methods Using LP Relaxations, Solving MINLP Problems Using Branch-and-Bound Methods, Solving MINLPs Using Outer Approximation. Global optimization for problems with continuous and discrete variables Methods for Global Optimization, Multi-start Methods, Heuristic Search Methods, Genetic algorithm.	After complet I After complet I After complet I After completion I After completion I I After completion I I After completion I I After completion I I I I I I I I I I I I I	ting this module O1: Describe th O2: Understand O3: Identify tec nethods and algo O4: Construct p O5: Formulatio O6: Apply optin tline g the problem d organization of Optimization Pro- models for optin n of Models, Deg of the objective bjective Function teasures of Profil n theory and models of optimization of One Variable, Sc nal Search, Poly of multivariable of the and results, Simp ogramming with mum, Quadratic inear Programming so of NLP Method and results, Simp ogramming with mum, Quadratic inear Programming ing Branch-and- nization for pro-	ne nature and organi d optimization theor chniques of optimization process engineering m of the objective fu- mization techniques f optimization proble blems. mization grees of Freedom, Ir e function ns, Efficiency Obje- tability. ethods ion: Continuity of I of the Objective Fun- ed functions: one-dir canning and Bracket nomial Approximat optimization: Method I, Quasi-Newton Me ad applications: Geo plex Algorithm, Sen h constraints: Direct c Programming, Pe- ning, The Generalized ods g: Branch-and-Bour Bound Methods, So oblems with continu	able to, zation of optimization problems y and methods tion and translates these concepts models for optimization inctions to chemical and process engineering ems, Scope and Hierarchy of Optim nequality and Equality Constraints ctive function, The Time Value of Functions, NLP Problem Statemet ction in Terms of Its Quadratic. mensional search, Numerical Met ing Procedures, Newton and Qua ion Methods. ods Using Function Values Only, Nethods. ometry of Linear Programs, Basic sitivity Analysis. et substitution, First-Order Neces enalty Barrier and Augmented ed Reduced Gradient Method, Re and Methods Using LP Relaxati living MINLPs Using Outer Appro tous and discrete variables	ing nization, Th in Models. of Money ir ent, Convex hods for Op si-Newton I Methods That e Linear Pro- sary Condi Lagrangian lative Adva ons, Solvir poximation.	e Essential n Objective ity and Its ptimizing a Methods of at Use First ogramming tions for a Methods, intages and ng MINLP

Semester	Code	Module Title C/E/O GP.							
7	CH4140		Biotechnology E G						
Hour	s/Week	Carlin	D	Evalu	ation %				
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
2	2	3.0	None	40	60				
Learning Outcomes									
After comr	leting this mo	dule, the student s							
•			iotechnology in society						
•		•	biotechnology, bionanotechnology	and nanobic	technology				
•			sive knowledge and interdisciplinar						
-			bioproducts and assessment of prod		field of				
•			iques utilized to engineer cells and		r				
-		ical applications	iques utilized to engineer cens and	organishis io	1				
•			lucts and processes for medical and	industrial apr	lications				
			ble skills in biotechnology	industrial app	incutions				
•			y of biotechnology to provide sustai	nable solution	ns for				
		y issues in science		indoite solution					
Syllabus C		,							
Engineeri	ng cells and o	rganisms for biop	processes:						
Bio-based	products and	industries, cellul	lar bioprocesses, DNA, gene expr	ession, prote	ein synthesis				
recombinat	nt DNA techno	ology, mutagenesi	s, antisense technology, OMICS, bio	oinformatics					
Enzyme te									
		of enzymes, enz	ymes in medical applications, enzy	mes in proce	ess industries				
immobilize	•								
Biopharm									
	n to phormoco								
			ology, biopharmaceuticals, fundame						
	es, economics	of biomanufacturi	ology, biopharmaceuticals, fundame ng pharmaceuticals, regulation and						
	es, economics rity of pharma	of biomanufacturi							
Future me	es, economics rity of pharma dicine:	of biomanufacturi ceuticals	ng pharmaceuticals, regulation and	quality appro	aches, supply				
Future me Drug deliv	es, economics rity of pharma dicine: ery and therap	of biomanufacturi ceuticals eutics: Conventio	ng pharmaceuticals, regulation and nal medical devices, drug delivery,	quality appro	aches, supply				
Future me Drug deliv and biologi	es, economics rity of pharma dicine: ery and therap ical/cell-based	of biomanufacturi ceuticals eutics: Conventio therapies, gene th	ng pharmaceuticals, regulation and nal medical devices, drug delivery, lerapy, and tissue engineering	quality appro	aches, supply				
Future me Drug deliv and biologi Biomolecu	es, economics rity of pharma dicine: ery and therap ical/cell-based les for huma	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n:	quality appro	aches, supply				
Future me Drug deliv and biologi Biomolecu Biotechnol	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m	ng pharmaceuticals, regulation and nal medical devices, drug delivery, lerapy, and tissue engineering	quality appro	aches, supply				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical	es, economics rity of pharma dicine: ery and therap cal/cell-based les for human ogical product techniques in	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology:	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production	quality appro	aches, supply				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product techniques in e and qualitati	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of biop	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i	quality appro	aches, supply				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product techniques in e and qualitati biochemical/c	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of bio iological processo	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production	quality appro	aches, supply				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors	es, economics rity of pharma dicine: ery and therap cal/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce	of biomanufacturi ceuticals eutics: Conventio therapies, gene the use/consumptio ion of flavours, me biotechnology: ve analysis of biop iological processe ess control:	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities	quality appro mechanical/o nstrumentatio	aches, supply electric-based on for produc				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors Biosensors	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product techniques in e and qualitati biochemical/b and bioproce in medical ap	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of biop iological processe ess control:	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i	quality appro mechanical/o nstrumentatio	aches, supply electric-based on for produc				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors in bioreme	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce in medical ap diation	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of bio biological processe ess control: plications, biosen	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities sors in industrial applications, path	quality appro mechanical/o nstrumentatio	aches, supply electric-based on for produc				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors in bioreme Vaccines a	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce in medical ap diation nd vaccine de	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of bio iological processe ess control: plications, biosen	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities sors in industrial applications, path ways:	quality appro mechanical/o nstrumentatio ogen detectio	aches, supply electric-based on for produc on, biosensor				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors in bioreme Vaccines a Viruses, pa	es, economics rity of pharma dicine: ery and therap ical/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce in medical ap diation nd vaccine de undemics and	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of bio biological processe ess control: plications, biosen evelopment path immunity, history	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities sors in industrial applications, path	quality appro mechanical/o nstrumentatio ogen detectio irology, imm	aches, supply electric-based on for produc on, biosensor				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors in bioreme Vaccines a Viruses, pa epidemiolo	es, economics rity of pharma dicine: ery and therap cal/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce in medical ap diation md vaccine do andemics and gy, developmod	of biomanufacturi ceuticals eutics: Conventio therapies, gene th use/consumptio ion of flavours, m biotechnology: ve analysis of bio biological processe ess control: plications, biosen evelopment path immunity, history	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities sors in industrial applications, path ways: y of infectious diseases, basics of v ests, vaccines, and antiviral therapie	quality appro mechanical/o nstrumentatio ogen detectio irology, imm	aches, supply electric-based on for produc on, biosensors				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors in bioreme Vaccines a Viruses, pa epidemiolo Bionanote	es, economics rity of pharma dicine: ery and therap cal/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce in medical ap diation nd vaccine do andemics and gy, developmo chnology and	of biomanufacturi ceuticals eutics: Conventio therapies, gene the use/consumptio ion of flavours, ma biotechnology: ve analysis of biop iological processe ess control: plications, biosen evelopment pathe immunity, history ent of diagnostic t nanobiotechnolog	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities sors in industrial applications, path ways: y of infectious diseases, basics of v ests, vaccines, and antiviral therapie	quality appro mechanical/o nstrumentatio ogen detectio irology, imm	aches, supply electric-based on for produc on, biosensor unology, and				
Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biosensors in bioreme Vaccines a Viruses, pa epidemiolo Bionanote Natural am	es, economics rity of pharma dicine: ery and therap cal/cell-based les for human ogical product techniques in e and qualitati biochemical/c and bioproce in medical ap diation nd vaccine de undemics and gy, developme chnology and d incidental	of biomanufacturi ceuticals eutics: Conventio therapies, gene the use/consumptio ion of flavours, ma biotechnology: ve analysis of biop iological processe ess control: plications, biosen evelopment pathy immunity, history ent of diagnostic t nanobiotechnologi nanoparticles, en	ng pharmaceuticals, regulation and nal medical devices, drug delivery, terapy, and tissue engineering n: utraceutical production products, analytical techniques and i es and metabolic activities sors in industrial applications, path ways: y of infectious diseases, basics of v ests, vaccines, and antiviral therapie pgy:	quality appro mechanical/o nstrumentatio ogen detectio irology, imm ss	aches, supply electric-based on for produc on, biosensor unology, and oplications o				

	Module Title C/E/O GPA NGPA									
7 CH4160	Process	Process Chemicals Management E GPA								
Hours/Week	C Ptr	Description (Constitution	Evalua	ation %						
Lecture Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE						
2 2	3.0									
Learning Outcomes										
industries. LO2: Recog LO3: Select LO4: Demo- process indu LO5: Discu. LO6: Apply Syllabus Outline Importance of chemica	nize the national a and apply the suit astrate the ability to stry. so the principals of the principles of g ls management for onal regulations o t concepts and to of chemicals al waste managem ems	nent and disposal	nicals manage ts, guidelines agement syste	ement. , and tools.						

Semester	Code	Module Title C/E/O GPA / NGPA								
7	CH4371	Petrole	Petroleum Trade and Economics E GPA							
Hours	s/Week			Evalua	ation %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE					
2	2	3.0	None	30	70					
Learning (Outcomes		·							
•	LO2: Evalua LO3: Analyz LO4: Descrit LO5: Select product portf LO6: Design Processing fa	te oil supply and of e Transport, Proce be trade practices best financial instr folio.	pectives of Oil and Gas Industry. demand and its effect on the industry essing and Sales Costs of Petroleum pertaining to Petroleum Operations. ruments for purchasing petroleum cr edures for techno-economic feasible	Processing. rude oil and d						
Syllabus O										
Oil and Ga Internation Exploration Effects of I Economic Financial i	l Perspective a as Industry M nal standards on & Producti Regional Poli Trends in Per nstruments u	larkets , guidelines and o ion tics and Activitie troleum Industry used in Petroleum		dustry Inclue	ding					

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4410	Р	Polymeric Materials E GPA					
Hours	/Week	a 1		Evalu	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH2210	30	70			
Learning C	Outcomes							
After compl After compl After compl After compl After compl After compl After compl After compl Advanced p crystalline p Biodegrada Nylon 6, Po Degradation degradation	leting this model LO1: Identify LO2: Suggest product. LO3: Select r LO4: Find so LO5: Explain for specific a LO6: Discuss utline of Polymeric I plastics, fibre ttices (naturan n packaging i maceutical, con sed in bioma mocomposite lends and allo g Polymers: rature polyme terials and re polymeric ma polymers) mble polymers hybydroxybut n and stabiliz , ozone degrad	t suitable analytic einforcing materi lutions to control a the importance of pplications. s the importance of Materials: es, thermoplastic of and synthetic) ndustry: smetic, electrical terials s yys rs and high streng inforcing materi iterials (conducti s and their applie yrate, polydioxan zation of polyme dation and biodeg	e polymer/s for a given application. al technique/s for identification of a als for a polymer composite. the degradation of polymers. of using polymer blends and composi- <u>of advanced materials used for selec</u> - elastomers, lattices, and their uses and characterization techniques appliances gth polymers ials used in polymer composites ve polymers, responsive polymers, H cations: poly (glycolic acid), poly(la none (PDO) rs: Thermal degradation, photo degradation,	sites over a si ted applicatio nydrogels, liq actic acid), N radation, oxic	ngle polymer ons. uid ylon 2- lative			

STUDENT HANDBOOK 2020 INTAKE

Semester	Code		Module Title	C/E/O	GPA / NGPA		
7	CH4026	Process Modelling and Simulation E G					
	s/Week	Credits	Prerequisites / Corequisites		ation %		
Lecture	Lab/Tutes	oreans		CA	WE		
2	2	3.0	CS1033, MA2014, MA3024, CH3034, CH4045, CH2180, CH1044, CH2015, CH4501	40	60		
Learning (Outcomes						
After comp	leting this mo	dule, students sho	uld be able to:				
•	•		odels, main elements of dynamic mo	odelling			
•		•	ers to develop a mathematical mode	÷			
			dels and linearize non-linear system	-	•		
		1		15.			
			e systems and processes.		:		
•			els of a process and build up comput	ter models for	r simulations		
			(Python/MATLAB/SIMULINK).				
•	LO6: Analyze	e processes by usi	ng simulation studies.				
Syllabus O	outline						
System and	d Model:						
		ing of Dynamic S	ystems, General Form of Dynamic	Models, Lum	ped		
		rial and Energy B		,			
	model buildi						
			tion, Theory and Applications of Di	stributed Svs	tems for		
		Diffusion proces					
	·	linear Models:					
			n of Linearization, Solution of the 2	ero-Input Fo	rm Solution		
	ral State-Space			Leto input I o	, solution		
		h and without re	actions				
			Homogeneous Model, 1D and 2D H	eterogeneous	Model		
	state or Dynan		iomogeneous mouel, 1D and 2D II	cicrogeneous	11100001,		
	systems analy						
			Nonlinear Systems- limit cycle beha	wiour Introd	uction to		
			Growth Model, A More Realistic F				
		d Orbit Diagrams		opulation M	buel, Cobwel		
		rk–Based Models					
				of ANINT	Chamical		
		xs, Development (of ANN-Based Models, Application	S OF AINING III	Chemical		
Engineerin			•				
		ensitivity Analys			•,• •,		
			y Analysis, Direct Differential Meth	iod, Global S	ensitivity		
		ysis of mathemati	cal models				
Case Studi	es:						
			Evaporation process				

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4420	Waste Minimization and Resources Recovery E GPA						
Hours	s/Week	Carlita		Evalı	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH3045	30	70			
Learning (Outcomes				·			
• • •	management LO4: Select r LO5: Apply p process indus LO6: Descril LO7: Analyze	improvement of p resource recovery, process integration stry. be circular econor e existing and new	and waste minimization opportuni processes. , recycling, and reuse techniques for a solutions for optimization of water my theories and concepts in the pro- v processes for waste minimization and waste management principles.	or waste. er consumptio cess industry	on in the			
Syllabus O	outline							
Extended p pays princip 5R Princip Source Ree Resources Recycling Incineration Process int Water pinc Concept of Good Man Introduction	roducer respon ple, Resources e (Refuse, Rea duction and V recovery fror and Reuse a, Engineered tegration solu h calculations f Cleaner Pro- ufacturing Pro- on to Circular	recovery, Waste I duce, Reuse, Repu Vaste Minimizati n waste techniques, Mat landfilling. tions for waste a and water networ duction and Clea cactices (GMP) r Economy and I	stewardship, Muda (Japanese term) management hierarchy, 3R principlurpose, Recycle), Waste-to-energy, ion erials Recovery Facility (MRF) voidance	e (Reduce, Ro Zero waste.	euse, Recycle),			

Semester	Code		Module Title	C/E/O	GPA / NGPA				
7	CH4430	Industrial Che	Industrial Chemical Manufacturing Processes E G						
	s/Week	Credits	Prerequisites / Corequisites	Evalu	ation %				
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE				
2	2	3.0	None	40	60				
Learning (•				
•	LO1: Unders LO2: Identify LO3: Define LO4: Illustra LO5: Detern LO6: Assess	w the Global Chen different Chemics <i>te</i> product value of <i>tine</i> Techno-econo	on of chemicals and role in society nical Process Industry al Manufacturing Processes chains (Global and local value chain pmics of Chemical Manufacture canagement concepts of Chemicals N						
Introduc Chemica Inorgani	tion to Globa ls and their r c chemicals n	ole in society	ess Industry (CPI)						
-	d chemicals	es and rennizers							
10 0 00 10 000 0		l Related Heavy C	Themicals						
		Speciality gases							
Industria		-r, subes							
Sulphuric	, Hydrochlori	c, Nitric, HF							
Organic	Chemicals M	anufacture							
Specialit	y fine chemic	al manufacture							
Pharmace									
Oleocher									
		ynthetic chemical	S						
	products man								
	oducts manu								
			ns in chemicals manufacture f chemicals manufacture						

Semester	Code		Module Title	C/E/O	GPA / NGPA	
7	CH4235	Polyme	GPA			
Hour	s/Week	~		Evaluation %		
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE	
2	2	3.0	None	30	70	
Learning						
After comp	oleting this mo	dule, students sho	uld be able to			
•	LO1: Identif	y and describe the	polymer processing operations rela	ted to rubber	and plastic	
	processing.					
•	LO2: Discus	s the influence and	d importance of processing paramet	ers on polyme	er processing	
	operations.			1 9		
•	1	rheological and he	at transfer principles to optimize th	e polymer pro	cessing	
	operations.	0		1 . 1 .	0	
•	1	<i>tize</i> the machinerio	es used in polymer processing.			
•			that can be appeared during respec	tive polymer	processing	
	operations.	- F		F J		
•		<i>ustrate</i> the ability t	to select the most appropriate proces	ssing techniqu	e(s) for a	
		mer product to ma				
•		good manufacturir				
Syllabus C						
•						
		mal transitions Processing chara	atoristics			
			ts; Processing characteristics: Visco	sity malt flor		
rheological		ur of polymer men	is, Processing characteristics: visco	osity, men nov	ν,	
	sfer in Polyme	n avatoma				
			d unsteady state heat conduction, co	nuaction and	radiation	
	er applications		u unsteauy state neat conduction, co	nivection, and	rauration	
			acturing techniques (dipping, casti	ng forming	enraving	
extrusion)	nion of latex;	1 rouucis manula	acturing techniques (dippling, cash	ing, ioanning,	spraying,	
,	ure of differen	nt grades of raw i	ruhhar			
		ng technologies.	lubbel.			
		ques for rubbers	and plastics			
			ng, Transfer moulding, Injection mo	ulding React	ion injustion	
Moulding p				ululing, React	ion injection	
Moulding p moulding,	Blow mouldin	g; Extrusion and (unding, React	ion injection	
Moulding r moulding, Curing tec	Blow mouldin chniques	g; Extrusion and C		ululing, React	ion injection	
Moulding p moulding, Curing teo Batch and	Blow mouldin hniques continuous cur	g; Extrusion and C	Calendaring		ion injection	
Moulding p moulding, Curing teo Batch and Machine o	Blow mouldin hniques continuous cur perations, pr	g; Extrusion and C	Calendaring nd their effects on product quality		ion injection	

Semester	Code	Module Title C/E/O GPA NGPA							
7	CH3253	Enviro	Environmental Bioengineering E GPA						
Hour	s/Week	Credits	Duran anisitas / Companisitas	Evalu	ation %				
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE				
2	2 3.0 None 30 70								
Learning	Outcomes								
• • • •	LO2: <i>Explain</i> LO3: <i>Descrit</i> LO4: <i>Evalua</i>	<i>the microbial control the microbial control be microorganism</i> <i>te biological systemp mathematical m</i>	bles of biological wastewater treatmenversion processes and operating p s according to energy source and c ems by applying microbial kinetics. odels and simulate bioreactors.	arameters. arbon source.					
Syllabus C									
	ion of microo								
	netabolic funct growth kinet								
	owth rate; rate								
		reatment princip	les						
			and basic parameters; aerobic and	anaerobic pr	ocess;				
		on and phosphorus		-					
		d activated sludg							
			s; Activated sludge process.						
		ess modelling							
	energy balance	tor bio reactors, o	lesign equation derivation; process	matrix; bala	nce growth				
reactions.		.]							
	s modelling to		tware tools						
Modelling and simulation using related software tools. Environmental Bioengineering Case Studies									
Fnvironm	antal Riaanai	neering Case Stu	dias						

Semester	Code		Module Title	C/E/O	GPA / NGPA		
7	CH4440	Petrochemical Process Operations E G					
Hours	s/Week	Credits	Denominitar / Companinitar	Evalu	ation %		
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE		
2	2	3	None	30	70		
Learning	Outcomes						
Syllabus C Introducti A brief o petrochemi Resource i	LO1: Descril LO2: Demon LO3: Analyse LO4: Apply p Sri Lanka. LO5: Design process. Dutline on to petroche verview of p cal process tec dentification	strate petrochemic e petrochemical con and evaluate of a emical industry etrochemical tec chnologies. and evaluate pot	should be able to, in petrochemical processes. cal conversion pathways. onversion technologies. version technologies to petroleum r process flow diagram for petrochem hnologies and discuss upon the entials in Sri Lanka currently in the petrochemical indus	mical convers	ology of the		
is becomin Petrochem Discuss the to maximiz Petrochem Discuss pro processes of A case stud	g a petroleum nical conversi e chemistry bel e economical nical processin pocess engineeri on petroleum si dy on design a	processing zone. on pathways hind the major co gains. ag pathways ing fundamentals treams as feedstoo and simulation of	nversion options used in industry a behind the major conversion proces ck for petrochemical manufacturing f a petrochemical conversion proc	nd discuss no ses including plants. cess	ovel strategies pre-treatment		
		al process will t tal and health risk	be discussed for optimization of sinvolved.	operating pa	rameters and		

Semester	Code		Module Title	C/E/O	GPA / NGPA
7	CH4285	Food Safet	Е	GPA	
Hour	s/Week	C l'tr	D	Evalu	ation %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	СА	WE
2	2	3.0	None	40	60
Learning	Outcomes		•		
After comp	leting this mo	dule, the student s	should be able to:		
•			n the modern food chain.		
•			d necessary control mechanisms to i	mprove hvgie	enic food
	manufacturin		,	1 58	
•		0	ry requirements for hygienically des	sign processes	8.
•		-	ment in compliance with standards a		
-	design.	plants and equipi	ment in compliance with standards t	and guidenne.	, for hygicine
•	U	te food safety ma	nagement systems and recommend	the preventive	measures
Syllabus C		ie 100e survey ma	nagement systems and recommend		incusures.
Introducti					
		(hazard risk hvo	tiene); Evolution of hygiene in food	nlant design a	nd operation
		industry-bottlene		plain design a	ind operation.
	gin and Natur		ens una issues		
	5		hysical: prevalence, characteristics,	contemporar	w monitoring
	nd control med		nysical. prevalence, characteristics,	contemporar	y monitoring
,	Building Desig				
.0	0 0	,	eriors; Site selection and plant	lavout. Sic	mificance ir
			alls, ceilings, and floors; Hygienic		

General design issues for factory interiors; Site selection and plant layout; Significance in segregation/zoning; Hygienic design of walls, ceilings, and floors; Hygienic design of selected fixtures, utility systems and process support systems; Control of air borne contamination (source and control systems)

Hygienic Equipment Design Essentials:

Key criteria in hygienic equipment design: risk assessment and regulatory requirements; Hygienic design of different types of equipment (closed, heating, dry matter handling, electrical, packaging, piping systems, seals, valves, pumps, etc.)- construction materials, minimum design essentials, cleaning regimes, improved hygienic control by sensors, and future trends

Hygienic Plant Operations I-Verification and certification of hygienic food processing plants:

HACCP: HACCP steps, identification of potential hazards, identify CCP, establish CCP, establish monitoring procedures, establish corrective actions, record keeping procedures, verification; other quality systems (ISO 22000)

Hygienic Plant Operations II-Good manufacturing practices (GMP):

Effective manufacturing operations and risk control; Use of standard operating procedures (SOPs); Managing risks (allergenic residue, insects, personal hygiene, food transportation); Cleaning, Disinfection, and Sanitation [Cleaning kinetics and mechanisms; Cleaning of raw material, plants, and equipment (CIP and COP), packaging, odour abatement; enzymatic cleaning]

Semester VIII

Semester	Code	Module Title C/E/O GPA / NGPA						
8	CH4035	Comprehensive Design Project II C GPA						
Hours	s/Week	Creadita	Promo anniaite a / Como anniaite a	Eval	uation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
-	10	5.0	CH4016	100	0			
Learning	Outcomes							
•	selection LO2: Design operational a LO3: Identif LO4: Select LO5: Descrit LO6: Analyz LO7: Develo	a selected proces spects <i>y</i> the type of mater control schemes a <i>be</i> the startup, shu <i>e</i> safety and econo	o be made and relevant assessmen s equipment in detail, including ch rial and method of fabrication suita nd instrumentation. t down, operational, and maintena omic aspects of the equipment. writing and drawing skills.	aemical, mec able for the e	hanical and equipment.			
options for required fo	Design n of design pr selecting the s r mechanical of	suitable process ed lesign, P & I, and	the design duty and design constr quipment; Chemical design calcula process safety.					

Mechanical Design, Process Control, and Process Instrumentation

Mechanical design calculations of major unit, accessories and supports; Mechanical drawings of major unit and components; Design of the control structure for the process unit; P & I diagram and Specifications of required instruments.

Process safety, Operation, and Costing

Conduct hazard and operability study (HAZOP) and identify and analyze problems that may represent hazards to personnel or equipment; Devise startup – shutdown procedure, maintenance schedule and troubleshooting plan; Costing of the complete unit including instrumentation.

Semester	Code	Module Title C/E/O							
8	CH4275	Polymer Produ	acts Manufacturing Technologies	Е	GPA				
Hours	s/Week	Credits	Prerequisites / Corequisites	Evalu	ation %				
Lecture	Lab/Tutes	Creuits	Trerequisites / Corequisites	CA	WE				
2	2	3.0	3.0 CH4235, CH4410 40 60						
Learning	Outcomes				•				
After comp	leting this mo	dule, students sho	uld be able to,						
•	LO1: Identify	y the components	in an industrial rubber product to sa	tisfy service	requirements.				
•	LO2: Apply	knowledge gain of	n polymer technology to optimize the	he manufactu	re of polymer				
	products.								
•	-	stand the manufac	turing technologies used in polymer	r industry.					
•			polymer products and to demonstrat	-	edures.				
•			chnologies to minimize pollution du						
•		• •	maintain the required quality of pro-						
Syllabus C	,								
		s of commodity a	nd engineering rubber products						
(tyres, hose	es and tubing, l	pelts, sheaths, foot	wear, bearings, mounts, gaskets and	l seals, floorir	ig and roofing				
products, e	tc.).								
Additives	used in polym	er products man	ufacturing						
Importance	e, functions, a	nd limitations of,	fillers, vulcanizing systems, proc	essing aids, e	extenders and				
diluents, pr	otective agent	s, dyes and pigme	ents and speciality additives.						
Manufactu	iring technolo	ogies used in pne	umatic and solid tyres						
Manufactu	iring technolo	ogies of gloves, fo	am and cast products						
Fibre man	ufacturing te	chnologies							
Manufactu	ire of extrusion	on-based product	ts and moulded						
Other Man	nufacturing to	echnologies							
Thermofor	ming and vacu	um forming.							
Manufactu	ring technolog	ies of polymer co	mposites.						
Recycling	and upcycling	g technologies.							
Quality as	surance aspec	ets in polymer pr	oducts manufacturing						
Product te	sting and Cha	aracterization							
DI · I ·		1 1 1 1	tion, and weathering properties						

Semester	Code	Module Title C/E/O GPA					
8	CH4742	Polymer	Products and Tool Design	Е	GPA		
Hours	s/Week	Credits	D ronoguigitos / Conoguigitos	Evalu	ation %		
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE		
2	2	3.0	CH4410	40	60		
Learning (Outcomes						
		dule, students sho	uld be able to,				
•			gineering principles applicable to de	esign of polyı	ner products		
	and tools.						
•			ms of polymer products used under	different serv	vice		
	environment						
•		be assembly techn	iques required for designing and ma	anufacturing	of polymer		
	products.						
•			ering polymer products.	_			
•			mould/die to manufacture polymer j				
•	0	<i>iize</i> the software u	used for design and fabrication of me	oulds for poly	/mer		
	products.						
Syllabus O							
Rubber ela	asticity and vi	iscoelastic prope	rties				
			sticity, Force as a function of def				
			zation, Boltzmann superposition pr				
			and creep, Dynamic mechanic	al benaviour	, Models of		
		ind Failure mech	r structure on viscoelasticity.				
			Toughness, Stress Concentrators (F	Jaws) Crack	Propagation		
		tigue Curves for P		Taws), Clack	riopagation,		
	rubber produ		orymers.				
			of rubber products, Features and ass	emblies of co	mmodity and		
			ion on designing of simple engineer				
	Plastic produce		ion on designing of simple engineer	ing ruccer pr			
			onsiderations for designing injection	on moulded	plastic parts.		
			rties, design of plastic product s for				
welded ass		1 1			2		
Design of l	Injection Mou	ılds					
			ool, multiplate tool system, Underc				
			Design of feed system, Design of				
			and cavity, Mould making Techniq	ues, Mould N	Aaterials.		
	extrusion dies						
		-	rreaded, integer and plate dies, Die				
			lumetric flow rate from extruder-die				
U			llow profiles; slit dies for flat film a	nd sheet extru	ision, circular		
	rcular solid pro						
			rication of moulds				
			ication of Moulds: Solidworks® mo				
	Moldflow®,	plastic injection n	noulding simulation software, Com	puter-aided n	nanufacturing		
(CAM).							

Semester	Code		Module Title	C/E/O	GPA / NGPA
8	CH4450	Ene	ergy Storage Systems	Е	GPA
Hours	Hours/Week		Pronognizitos / Conognizitos	Evaluation %	
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
2	2	3.0	CH1051, CH2631, CH1044	40	60
Learning (Outcomes		•		

After completing this module, the student should be able to,

- LO1: *Identify* available energy storage technologies
- LO2: Assess the demand of energy storage for embedded generation
- LO3: *Apply* suitable energy storage technologies
- LO4: Assess the economic viability and conversion efficiencies of different energy storage technologies
- LO5: *Design* energy storage systems

Syllabus Outline

Introduction

Overview of energy storage concepts, Need of energy storage in renewable energy, Limitations and impacts of energy storage technologies.

Thermal energy storage

Sensible heat storage, Latent heat storage (phase change materials), Thermochemical energy storage (reversible reactions), Material selection, Application-specific constraints, Design of thermal energy storage for utility-scale renewables particularly for solar and geothermal power.

Electrochemical energy storage

Battery system structure, Elementary principle, Different types of batteries, Battery Management Systems, Aging of electrochemical batteries, Design of battery bank and economic evaluation for intermittent renewable energy systems.

Chemical energy storage

Concepts of power-to-gas and power-to-liquid, Efficiency and cost of fuel production, storage, transport, and electrical restitution, Comparison of different power-to-fuel pathways.

Mechanical energy storage

Concepts of pumped hydro, compressed air, flywheel.

Electrical energy storage

Concepts of energy storage in capacitors, ultracapacitors, and supercapacitors, Comparison of magnitude and quality of energy stored.

System integration of energy storage solutions with power generation units and grid management

Semester	Code	Module Title C/E/O G N					
8	CH4255	I	Renewable Energy	Е	GPA		
Hours	s/Week	Condita	Decementation / Companyinitan	Evalu	ation %		
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE		
2	2	3.0	CH1051, CH1044, CH1061	40	60		
Learning	Outcomes						
•	LO1: Identify LO2: Descril LO3: Analyse utility-scale. LO4: Apply r LO5: Evaluat technologies.	e the applications nodelling and sim te site-specific tec	y resources. newable energy technologies. of renewable energy technologies in ulation tools to analyse renewable e hno-economic-environmental viabi	energy techno lity of renewa	ologies. able energy		
• Syllabus C		optimal renewabl	e energy systems that meet specific	energy dema	inds.		
Introducti	on						
		nergy concepts.					
Wind ener	0.						
		ation and assessn	nent, Conversion technologies and	l principles,	Wind power		
application							
Hydel ener	0.	tion and according	ant Conversion technologies and n	ringinlag Dig	o Miono Mini		
•			ent, Conversion technologies and p	rincipies, Pic	0/WICTO/WIIII		
Solar ener	gy applications						
Solar resor principles,	urce identifica Solar PV/solar		nent, Solar PV/solar thermal cor ons in different scales.	version tech	nologies and		
Biomass en	00						
and princip	les, Biomass c	combustion/gasific	ment (special focus to energy crops cation/pyrolysis applications in diffe ng software tools		technologie		
			anasific technical notantial level	and next of			

Design and optimization based on site-specific technical potential, levelized cost of energy, and environmental impact.

Semester	Code	Module Title C/E/O GPA / NGPA					
8	CH4651	Cor	nbustion Technology	Е	GPA		
Hours	s/Week	Credits	Decementation / Companyinitan	Evalu	ation %		
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE		
2	2	3.0	CH1051, CH 1044, CH2631, CH2015, CH4501, CH3055	40	60		
Learning	Outcomes			•			
After comp	oleting this mo	dule, the student s	should be able to:				
•	LO1: Unders	stand the fundame	ntal concepts in combustion.				
•	LO2: Determ	ine the factors int	fluencing the flame speed and the flat	ame thickness	s of laminar		
	premixed flat	mes.					
•	LO3 Use the	conserved scalar	formalism to understand and explai	n non-premix	ed		
	behaviour.						
•	LO4: Estima	te the droplet evap	poration and burning rates.				
•	LO5: Use tur	bulent combustio	n concepts to characterize combusti	on regimes.			
•			epts in solid combustion to develop	simple mode	ls of the		
	ç	carbon particle.					
•	LO7: Apply 1	nethods used to q	uantify the pollutant emissions from	n combustion	systems.		
Syllabus C	Dutline						
	n to combustion						
		tion, definition of co	ombustion, combustion modes and flame	e types			
	rerequisites	nd aquilibrium M	ass, energy and atomic species conserva	tion: Multisnes	ies equilibrium		
and calculati		ina equinorium - Ma	ass, energy and atomic species conserva	uon, munispec	ies equinorium		
chains; Pollu	utant formation,	Multistep reactions	ics (law of mass action and activation e and explosions; Steady state and partia				
Characteristi	ic time and space	e scales					
Application	s of chemical k	inetics - limit react	ors s (Static reactor, Perfectly stirred reactor	r Plug flow reg	actor). Thermal		
explosions;		combustion analysi	s (state reactor, reflectly stifted reactor	i, i iug now ica	ictor), mermai		
		transfer in combusti	on - molecular and convective fluxes: C	haracteristic n	on-dimensional		
		is, Schmidt, Prandlt,	Peclet, Reynolds				
Pollutant er				.			
		non-premixed com	pollutant; Quatification of emissions	; Emissions 1	rom premixed		
	emixed flames	i non-preniixed com	bushon				
		oncepts and measur	ements; Characteristic time and space sc	ales, Zeldovich	n number; One-		
			d solutions; Effects of mixture composi-	tion, stretch and	d curvature		
	on-premixed fla			1 6			
			nent methods; Characteristic time and sp tion equations: co-flow and opposed flo				
	omposition and		tion equations. co-now and opposed no	w, Emit ease s	olutions, Effect		
	poration and b						
			osed form analytical solutions to the si				
			fluence of droplet size and ambient con				
and burning; fuel combus		ation rates and dropl	et lifetimes; One dimensional analysis o	i a simple, stea	uy flow, liquid-		
Turbulent f							
		e scales; Regimes of	turbulent combustion; Measurement me	thods and resul	lts; Approaches		
to modelling	turbulent comb	ustion; Turbulent pro	emixed flame characteristics; Turbulent of				
	to turbulent con	nbustion theory					
Burning of		le combustion: Eur	damental concepts in solids combustion	, hatarogonou	reactions and		
••	0		del, two-film model; particle burning tir	0			
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,			

Semester	Code		Module Title C/E/O GPA					
8	CH4215	Environmenta	Environmental Engineering and Management E GPA					
Hours/Week Evaluation					ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH3045	30	70			
Learning	Outcomes							
_								

After completing this module, student should be able to:

- LO1: Identify and describe environmental pollutants management techniques.
- LO2: Apply environmental accounting in project analysis.
- LO3: Apply mathematical models to simulate pollution control and treatment operations
- LO4: Assess environmental impacts.
- LO5: Design pollution control equipment and processes.

Syllabus Outline

Wastewater Engineering:

Treatment levels, physical and chemical treatment operations, biological (Up flow anaerobic sludge blanket (UASB), membrane bio reactors) and advanced treatment processes.

Air Pollution Control:

Particulate and gaseous pollutants control equipment and processes.

Solid Waste Management:

Integrated solid waste management, collection, treatment, and disposal.

Hazardous Waste Management and Engineering:

Hazardous waste treatment and disposal.

Environmental Impact Assessment:

Procedure and methods

Basics of Environmental Accounting:

Environmental valuation techniques and project analysis

Semester	Code	Module Title C/E/O GPA							
8	CH4460	Sustaina	able Process Technology	Е	GPA				
Hours	s/Week	Credits	Brown and sites / Companyisites	Evalı	ation %				
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE				
2	2	3.0	3.0 CH3045 30 70						
Learning	Outcomes								
•	LO1: Descrit LO2: Apply I LO3: Evalua sustainability LO4: Select J LO5: Evalua	ife cycle thinking <i>te</i> energy flows of processes and tech <i>te</i> carbon footprin	ics of sustainable process technolo for products and processes in the p f process life cycle and interpret the mologies based on environmental at and water footprint of products and mpacts of products and process life	process indus em for energ sustainability nd processes	y				
Syllabus C Introducti processes		able Process Te	echnologies and Strategies to d	etermine su	stainability of				
-	d Technology	Selection							
		Products and Pro	cesses:						
			ways to define a life cycle scope o	f a given pro	duct or process				
			cradle, gate-to-gate scopes)	6 1	1				
		ssessment of Pro							
			Energy Sustainability Indicators for	r Processes					
	otprint Asses								
GHG emis	sion reductio	ns or removal en	hancements:						
Procedure	and Technique	s							
Water Foo	otprint Assess	ment							
Eco-Design	n and greenin	g the supply chai	in:						
			ansportation, use and end-of-life st	ages of a pro	cess.				
Life Cycle	Assessment (LCA) Methodolo	ogy:						
			ry, Functional unit, Allocation rule						
			nental impact (LCIA) categories, L						
		Introduction to LO							
		d Life Cycle Cos							
	ies for Sustair								

Semester	Code	Мо	C/E/O	GPA / NGPA	
8	CH4351	Up-stream Oil	and Gas Operations	Е	GPA
Hours/Week		Credits	Prerequisites /	Evalu	ation %
Lecture	Lab/Tutes	Credits	Corequisites	CA	WE
2	2	3.0	None	30	70
Learning Ou	itcomes				
• L • L • L • L • L • L	03: Understand c 04: Implement teo atural gas. 05: Analyse probl 06: Apply modell 07: Design optim	position, characteriz haracteristics of good chnologies for enhance ems in upstream pro- ing and simulation to	ation, and classification o d Reservoir Rock and Exp ced oil and gas production cessing operations and pa ols to identify causes and il and gas recovery proces	loration Tools and onsite pr rtial / full shut solutions for	s and Method occessing tdowns. problems.
Syllabus Out					
Introduction					
	roleum processing rude petroleum	and key operations i	n the petroleum rigs and c	carriers.	
•	-	s of crude petroleum			
Production of		s of crude perioteum			
		g and Recovery meth	ods of crude.		
	f produced fluids				
		hree-phase oil water	gas separation.		
	f produced fluids				
			salting of crude oil, Crude	e oil stabilizat	ion and
			Produced water treatment.		
	sing and Treatme		Car dahadardian Cardi	an and East	
Natural Gas L		g, sour gas treating,	Gas dehydration, Separati	ion, and Fracti	ionation of
	•	Compressors in Ca	aseous fuel Processing		
		l rigs and carriers	iscous fuci i foccissilig		
11012 manage	inche in ci ude of	ings and carriers			

Semester Code Module Title C/E/O GP/ NGI								
8	CH4381	Petrole	eum Refining Operations	Е	GPA			
Hours	s/Week	Credits	Proposicitos / Concentration	Evalu	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2 2 3.0 None 30 70							
Learning (Outcomes							
•	LO2: Identify hydrocarbon LO3: Schedu derivatives. LO4: Analys LO5: Apply 1	fuels based on the <i>le</i> production rout <i>e</i> problems in petr nodelling and sim	f production processes and technolo	petrochemica artial / full shu solutions for	ls and their itdowns. problems.			
Character Application application Refinery P Polishing & Product H Utilities M Production Problems of	on Subsurfac ization of Pet a based Petrole s. Processing of (& Conditioning andling & Sta anagement in a Facilities in in petroleu	roleum eum Products Cha Dils and Gasses g Processes in liqu orage in Oil and o o Oil & Gas Proce m processing ope	Dil & Gas Production racterization – Automobile, Power ; id fuel processing & Gaseous Fuel ; Gas Processing ess Facilities & HSE Management erations and partial / full shutdow mical processes in petroleum refin	Processing. t in Petroleum ns				

8 CH4294 Bioengineering E GPA Hours/Week Credits Prerequisites / Corequisites Evaluation % Lecture Lab/Tutes Credits Prerequisites / Corequisites CA WE 2 2 3.0 None 40 60 Learning Outcomes After completing this module, the student should be able to: . LO1: Identify, recognize, and appreciate engineering contributions in bioengineering applications . LO2: Quantify kinetics of microbial growth and enzyme action . LO3: Use tools of bioprocess engineering . LO4: Design key aspects of an industrial-scale fermenter . LO5: Evaluate performances of a bioreactor . LO6: Troubleshoot operational problems in bioprocessing Introduction to upstream processing Introduction to upstream processing, isolation, preservation, and improvement to industrially importan microorganism Cell cultivation Microbial growth kinetics Growth cycle for batch cultivation, growth models for batch, plug flow and continuous bioreactors estimation of mono-kinetic parameters, productivity optimization and cell recycling Enzyme kinetics Introduction to enzyme reactions, Mechaelis–Menton approach and Briggs-Haldane approach, enzyme reactor types and enzyme reactons, design of agitated bioreactors, measurements, inst	Semester	Code	Module Title C/E/O GPA							
Lecture Lab/Tutes Credits Prerequisites / Corequisites CA WE 2 2 3.0 None 40 60 Learning Outcomes After completing this module, the student should be able to: • LO1: Identify, recognize, and appreciate engineering contributions in bioengineering applications • LO2: Quantify kinetics of microbial growth and enzyme action • LO3: Use tools of bioprocess engineering • LO4: Design key aspects of an industrial-scale fermenter • LO5: Evaluate performances of a bioreactor • LO6: Troubleshoot operational problems in bioprocessing Syllabus Outline Upstream processing Introduction to upstream processing, isolation, preservation, and improvement to industrially important microorganism Cell cultivation Microbial, animal and plant cell cultivation and growth requirements, inoculation and culture media selection and design of media for specific function, quantitative aspects of microbial growth and product formation Microbial growth kinetics Microbial growth kinetics Microbial solution of mono-kinetic parameters, productivity optimization and cell recycling Enzyme kinetics Introduction to enzyme reactions, Mechaelis–Menton approach and Briggs-Haldane approach, enzyme reactor types and enzyme inhibition Sterilization Sterilization fermentation media and air	8	CH4294		Bioengineering	Е	GPA				
Lecture Lab/Tutes Letter function of pairing of the pa	Hours	s/Week	Carlin		Evalu	ation %				
Learning Outcomes After completing this module, the student should be able to: • LO1: Identify, recognize, and appreciate engineering contributions in bioengineering applications • LO2: Quantify kinetics of microbial growth and enzyme action • LO3: Use tools of bioprocess engineering • LO4: Design key aspects of an industrial-scale fermenter • LO5: Evaluate performances of a bioreactor • LO6: Troubleshoot operational problems in bioprocessing Syllabus Outline Upstream processing Introduction to upstream processing, isolation, preservation, and improvement to industrially importan microorganism Cell cultivation Microbial, animal and plant cell cultivation and growth requirements, inoculation and culture media selection and design of media for specific function, quantitative aspects of microbial growth and product formation Microbial growth kinetics Growth cycle for batch cultivation, growth models for batch, plug flow and continuous bioreactors estimation of mono-kinetic parameters, productivity optimization and cell recycling Enzyme kinetics Introduction to enzyme reactions, Mechaelis–Menton approach and Briggs-Haldane approach, enzyme reactor types and enzyme inhibition Sterilization of fermentation media and air, sterilization kinetics, process design Bioreactors – selection, design, operation Modes of operation, types of reactors, design of agi	Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
After completing this module, the student should be able to: • LO1: Identify, recognize, and appreciate engineering contributions in bioengineering applications • LO2: Quantify kinetics of microbial growth and enzyme action • LO3: Use tools of bioprocess engineering • LO4: Design key aspects of an industrial-scale fermenter • LO5: Evaluate performances of a bioreactor • LO6: Troubleshoot operational problems in bioprocessing Syllabus Outline Upstream processing Introduction to upstream processing, isolation, preservation, and improvement to industrially importan microorganism Cell cultivation Microbial, animal and plant cell cultivation and growth requirements, inoculation and culture media selection and design of media for specific function, quantitative aspects of microbial growth and produc formation Microbial growth kinetics Growth cycle for batch cultivation, growth models for batch, plug flow and continuous bioreactors estimation of mono-kinetic parameters, productivity optimization and cell recycling Enzyme kinetics Introduction to enzyme reactions, Mechaelis–Menton approach and Briggs-Haldane approach, enzyme reactor types and enzyme inhibition Sterilization Sterilization of fermentation media and air, sterilization kinetics, process design Bioreactors – selection, design, operation Modes of operation, types of reactors, design of agitated	2	2	3.0	CA V						
 LOI: <i>Identify, recognize, and appreciate</i> engineering contributions in bioengineering applications LO2: <i>Quantify</i> kinetics of microbial growth and enzyme action LO3: <i>Use</i> tools of bioprocess engineering LO4: <i>Design</i> key aspects of an industrial-scale fermenter LO5: <i>Evaluate</i> performances of a bioreactor LO6: <i>Troubleshoot</i> operational problems in bioprocessing Syllabus Outline Upstream processing Introduction to upstream processing, isolation, preservation, and improvement to industrially important microorganism Cell cultivation Microbial, animal and plant cell cultivation and growth requirements, inoculation and culture media selection and design of media for specific function, quantitative aspects of microbial growth and product formation Microbial growth kinetics Growth cycle for batch cultivation, growth models for batch, plug flow and continuous bioreactors estimation of mono-kinetic parameters, productivity optimization and cell recycling Enzyme kinetics Introduction to enzyme reactions, Mechaelis–Menton approach and Briggs-Haldane approach, enzyme reactor types and enzyme inhibition Sterilization Sterilization of fermentation media and air, sterilization kinetics, process design Bioreactors – selection, design, operation Modes of operation, types of reactors, design of agitated bioreactors, measurements, instrumentation, and control, mass transfer concepts, power consumption, design of aeration and agitation systems, scale up strategies and criteria Recovery and purification of bio-products Process selection and design	Learning (Outcomes								
Need, challenges, and evolution; cell sources and culturing; scaffolds; the way forward	After comp After	leting this mo LO1: Identify applications LO2: Quantify LO3: Use too LO4: Design LO5: Evalua LO6: Trouble Dutline processing n to upstream tism ation animal and p nd design of m growth kinetif cle for batch of mono-kinet n to enzyme n es and enzyme n s and enzyme n s s resection, peration, type: ass transfer co nd criteria and purificati	<i>p</i> , <i>recognize</i> , <i>and a</i> <i>fy</i> kinetics of microls of bioprocess e key aspects of an <i>te</i> performances of <i>eshoot</i> operational processing, isola lant cell cultivati- tedia for specific f ics cultivation, grow ic parameters, pro- reactions, Mechae inhibition ion media and air, design, operation s of reactors, design ncepts, power con on of bio-produc	appreciate engineering contribution robial growth and enzyme action engineering industrial-scale fermenter of a bioreactor l problems in bioprocessing tion, preservation, and improvement on and growth requirements, inocu function, quantitative aspects of mid with models for batch, plug flow and oductivity optimization and cell recy elis–Menton approach and Briggs-F , sterilization kinetics, process design gn of agitated bioreactors, measurer nsumption, design of aeration and a	nt to industria ulation and c crobial growt nd continuou /cling Haldane appro gn nents, instrun	ally important ulture media h and product s bioreactors oach, enzyme nentation, and				

Code		Module Title	C/E/O	GPA / NGPA
CH4691	Food	d Process Engineering	Е	GPA
s/Week	Caradita		Evaluation %	
Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE
2	3.0	None	40	60
	CH4691 5/Week	CH4691 Food	CH4691 Food Process Engineering S/Week Credits Prerequisites / Corequisites	CH4691 Food Process Engineering E S/Week Credits Prerequisites / Corequisites Evalue Lab/Tutes Credits Prerequisites / Corequisites

Learning Outcomes

After completing this module, the student should be able to,

- LO1: *Explain* the mechanisms of spoilage and deterioration of foods and raw materials.
- LO2: *Describe* the role and function of packaging materials in food preservation.
- LO3: *Relate* food quality (texture, sensory, structure, etc.) to the chemical composition, processing, and storage conditions.
- LO4: *Develop* simple understanding on nutrition and dietetics and explain the effects of processing steps on nutritional quality.
- LO5: *Evaluate* common food processing techniques and preservation methods for safe and quality food production.
- LO6: Calculate and model different thermal technologies.

Syllabus Outline

Introduction to Food Processing

Food is Life; Evolution of Food Industry from Make-Service-Care; Properties of Food Material (mechanical, thermal, electrical properties, structure, water activity, phase transition phenomena in food). **Impact of food processing on nutritional quality**

Nutrient value of different types of food; Role of nutrients; Food energy; Food processing and effect of unit operations on nutritional quality.

Food Engineering Operations

Preparative Operations; Structuring Processes (crystallization, glass transition, extrusion, emulsification, fat replacement); Separation Processes (freeze drying, freeze concentration, drying, membrane separation).

Food Preservation and Shelf-life I

Farm to mouth interactions, stakeholders; Mechanisms of food spoilage (microbial, enzymatic, chemical, physical); Food Preservation Processes; Minimally processed food (need, techniques, hurdle technology). **Food Preservation and Shelf-life II**

Thermal Processing of Food [Thermal process parameters; Kinetics of thermal inactivation of MOs and enzymes; Lethality; Optimizing thermal processes for safe and quality foods; Current and emerging thermal technologies and equipment]; Low Temperature Operations [Chilling and Freezing; Factors affecting rate of freezing; Freezing time calculations; Properties of frozen food; Equipment and Methods]; Nonthermal preservation processes [Ionizing irradiation; High hydrostatic pressure preservation; Pulsed electric fields, Ultraviolet light and pulsed intense lights, Ultrasound treatment, Ozonation, Cold Plasma]; Chemical Preservation [Chemical control of spoilage (kinetics and antimicrobial agents); Antioxidants]; Biological Preservation [Fermentation and enzymes in food industry; Biopreservation].

Food Packaging

Factors governing the type of packaging and kinetics of packaging; Packaging materials; Atmosphere in the Packaging; Smart packaging.

What's Cooking-Trends in Food Engineering

Food mega trends; Functional foods; Food enrichment with natural ingredients; Probiotics and prebiotics; Nanofoods and Nanobiotechnology in food processing; 'Enginomics'.

Research

Research, being an integral part of the curriculum of undergraduate and postgraduate studies, not only boosts the research potential of the students but also contributes to furthering the boundaries of knowledge in the field of Chemical and Process Engineering. Undergraduate and graduate students at the department perform research in the areas of Energy and Environmental Engineering, Food and Biochemical Engineering, Polymer Engineering, and Petroleum Engineering. The availability of well-functioning and well-equipped laboratory facilities intensifies the value of the experimental work and research activities conducted by both undergraduate and postgraduate students.

CH 4751 - Research Project lays the foundation for students to initiate research studies at the undergraduate level. The module will allow students to develop research competencies identify to gaps/problems by reviewing the available literature in a critical manner, develop strategies/methodologies to address the research gaps, analyse results and derive conclusions from their research. Moreover, students would gain the opportunity to communicate their key research findings in peer-reviewed journals and national/ international conferences or symposia.

In addition, the department facilitates opportunities for postgraduate students to engage in state-of-the-art research projects under the supervision of academic staff members at the department. Students can enrol in M.Sc., M.Phil., and Ph.D. degrees at the department on a full-time or parttime basis and gain exposure to a better learning environment to acquire knowledge and experience essential for a postgraduate.

The research and development unit which has been set up as a collaboration of the department and the DSI Samson group also provides a platform for students to engage in projects related to rubber products and process development. Furthermore, the department is engaged in industrial research projects to provide innovative solutions for the sustainable development of the local industry.

Some of the recent research projects carried out at the department are,

- Computational fluid dynamics modelling of thermo-chemical processes
- Numerical simulations of biomass combustion and gasification processes
- Process development for synthesis of bioactive compounds and biofuels from microalgae
- Application of absorption and extraction techniques on wastewater treatment
- CO2 capture and airborne pollution control using industrial solid waste
- Life Cycle Assessment of biofuel and sustainable energy production processes
- Implementation of process control techniques and analyses on process optimization
- Effects of using natural fillers on mechanical properties of rubber
- Identification of best blend composition of natural rubber – thermoplastics blends for industrial applications

STUDENT HANDBOOK 2020 INTAKE

- Dynamic modeling and simulation of anaerobic digestion processes for solid waste management
- Assessment of sustainable energy potential of renewable resources

Comprehensive Design Project

CH4016, CH4035 – Comprehensive Design Project is the ultimate course for the B.Sc. Chemical Engineering Degree. It will allow the students to bring together much of their previously learned engineering knowledge on a real, practical problem. It contributes 10 credits gained in semesters 7 and 8.

The project is also quite different from the majority of the subjects that the students will be doing in the initial semester. It is a team effort and an open-ended project, where students get the opportunity to work as a team on open-ended projects with real industrial complications. Communication amongst members is vital. There is no "right" solution! - Just the "best" solution in the time available.

One of the goals of this subject is to introduce students to an industrial periphery where real life processes and problems will have to be addressed. The academic staff will endeavour to give advice and support as the student proceed in the project. The group will be managed by its members. There needs to be a leader who co-ordinates activities. It is the responsibility of the group members to ensure

- Biomass-based renewable energy systems
- Parameter optimization of chemical processes

that the project progresses at an appropriate rate. Good communication within the group is essential and this will be reflected in your final report. It will show the students' effort at teamwork and communication ability. As a UGC accredited B.Sc. Chemical Engineering degree program, DCPE places a high priority on this subject as part of your entry into the profession.

In this unit, student will be encouraged and facilitated to develop the ability and desire to:

- Work as a team on open ended problems within tight time constraints in such a way that all members contribute individually as well as collectively with proper communication
- Apply fundamental chemical and environmental engineering principles and available data from literature to design and analyse chemical processes.
- Make critical design decisions in a safe, creative, practical and cost-effective manner.
- Report the work in formal, concise, and in an organized manner.

Industrial Training

As a partial fulfillment of the B. Sc. in Chemical and Process Engineering degree program, it is compulsory for the undergraduates to undergo Industrial Training at an industrial placement related to the Chemical and Process applications. Industrial Training module is a compulsory Module of 06 Credits where the undergraduates must enroll for the module at the time of registration and enrollment for Semester 05. A11 undergraduates are placed in an industrial placement for a minimum duration of 24 weeks right after their Semester 05 is completed. The Industrial Training module has been designed to provide the practical exposure to the industrial applications of chemical and process engineering for the undergraduates. This is the main opportunity that is offered to the undergraduates with a dedicated time slot and official engagement given for working in an industry as a trainee Chemical and Process Engineer before the students graduate in their degree qualifications.

In order to have background knowledge and awareness about the Industrial Training program and to make Industrial Training more fruitful, a series of webinars/workshops/guest lecture sessions are arranged during the Semester 5. In these sessions, invited professionals from the industry address the students on the various topics, such as CV Preparation/ Improvement Tips, Interview Social Facing Skills and Etiquette. Occupational Safety, Introduction to Lean Manufacturing in Industries. Plant Maintenance Safety, Health. and Environmental aspects, etc.

In addition, the senior chemical and process engineering undergraduates who have already undergone Industrial Training in the recent years will also make presentations and share their experiences at different places with the undergraduates, waiting to go for industrial training. Further, the Industrial Training Coordinator of the Department conducts special awareness sessions and facilitates the undergraduates in the industrial training placement process by finding the industrial training places, guiding to apply for industrial training and facing interviews, and the selection process of the industrial placements of all undergraduates.

In the Industrial Training program, the undergraduate is supposed to apply the theoretical and experimental knowledge gained as an undergraduate, and to improve the practical skills, management skills and interpersonal skills, including professional ethics. Development of these skills is highly important to become a qualified engineer. Further, the student is required to cover the important areas. such as product manufacturing processes, waste treatment processes, process design, process modification, process optimization, problem identification, and problem solving. Each undergraduate must ensure that they select an industrial placement that is possible to achieve the learning outcomes (LOs) through their industrial training program as follows.

- Apply knowledge and principles of chemical and process engineering.
- Understand industrial systems, procedures, and practices. (i.e., administration, financial, general management, logistics, HSE, legal, etc.)
- Design solutions for industrial/engineering problems in the industry using modern tools and techniques. (i.e.,

Instrumentation, IT tools, software platforms, knowledge-based data, experimental design, etc.)

• Develop soft skills, such as teamwork, communication, time management, leadership, and understanding of professional ethics.

During the stay in an industry placement, the undergraduate is supposed to maintain a technical diary that covers the trainee's experiences on engineering, technical, and managerial aspects. The undergraduate's performance on Industrial Training is closely monitored and examined by an assigned academic staff member from the department. the department industrial training coordinator, industrial training division - University of Moratuwa, and National Apprentice and Industrial Training Authority (NAITA), by visiting the relevant industrial placement either physical and/or online mode. After successful completion of the industrial training program, students are supposed to submit a duly written technical report covering all aspects of their training to the industrial training division. The assessments/evaluations of the Industrial Training module are conducted by a senior lecturer attached to the industrial training division as the main examiner. The undergraduates must present training experience as an their oral presentation followed by a viva voce examination in front of an evaluation panel that consists of a senior lecturer attached to the industrial training division, one or more academic staff members of the DCPE. NAITA officials and a representative from the respective industrial training place may also participate in the evaluation panel. The undergraduate's level of knowledge, skills, and attitudes improvement along with the industrial training experience are evaluated during this final oral examination.

The Industrial Training module provides students a valuable opportunity to put into practice what they have learned so far and to learn from professionals to enhance their current knowledge and skills as well as attitudes required in professional environment. For a fruitful Training experience, undergraduates are encouraged to make the optimum use of the opportunities provided by their Training establishments and gain not only a more realistic understanding of Engineering in application, but also to obtain a holistic understanding of the corporate world and industrial environment by getting hands-on experience from grass root level to the top management. They can acquire relevant knowledge and skills in each area of exposure, while developing meaningful connections through networking with all hierarchical levels in the industry. Although every Training Establishment may not be equipped fully to provide a comprehensive training in all areas of interest, it is vital that students put maximum effort to fulfill expected learning outcomes as much as possible. This training experience will be beneficial in opening up career opportunities near or right after the graduation as well as be useful in academia through hands-on experience, industrial projects, and problem solving that will develop industrial research opportunities and life-long learning for an undergraduate's future.

Some industrial training places of the recent undergraduate batches are as follows.

- Ceylon Petroleum Corporation
- Unilever Sri Lanka Ltd
- Hemas Holdings PLC
- Industrial Solutions Lanka (Pvt) Ltd
- Ansell Lanka (Pvt) Ltd
- Lanka Sugar Company (Pvt) Ltd

- Ethimale Sugar and Plantations Ltd
- Nestle Lanka PLC
- Ceylon Biscuits Ltd
- GlaxoSmithKline Pharmaceuticals Ltd
- Ceylon Cold Stores
- Renuka Agri Foods PLC
- Trelleborg Lanka (Pvt) Ltd
- Phoenix Industries Limited
- Norochcholai Lakvijaya Coal Power Plant
- Siam City Cement (Lanka) Ltd
- Laugfs Lubricants Ltd
- Macksons Paints Lanka (Pvt) Ltd
- Midas Safety Inc.
- Ceylon Oxygen Ltd
- AEN Palm Oil Processing Pvt Ltd
- Heineken Lanka Ltd
- Alumex PLC
- Dipped Products PLC
- PGP Glass Ceylon PLC
- Rocell Bathware Ltd

- Coats Threads Export Pvt Ltd
- Ceylon Agri Foods Pvt Ltd
- Ceylon Graphene Technologies
- State Pharmaceutical Manufacturing Cooperation
- Lankem Ceylon PLC
- George Steuart Manufacturing Ltd
- Cargills Quality Diaries Pvt Ltd
- Camso Loadstar (Pvt) Ltd
- Phoenix Industries Ltd
- Norochcholai Lakvijaya Power Plant
- Siam City Cement (Lanka) Ltd

Awards Available for DCPE Students

Award Ceremony

Thusitha Senevirathne Memorial Scholarship

Awarded for the CPE undergraduate who has obtained the highest GPA in the first attempt in Level 3 Semester 1 Examinations, provided that the student obtains an Overall GPA of 3.7 or above.

Thusitha Senevirathne Memorial Award

Awarded for the CPE undergraduate who is specializing in the field of Environmental Engineering and has obtained the highest GPA in Level 3 and Level 4 at the first attempt, provided that the student obtains an Overall GPA of 3.7 or above

Unilever Award

The CPE undergraduate who obtains the highest marks for the Final Year Comprehensive Design Project, provided that he obtains a grade A receives this award.

Dr. Mahesh Amalean award

This prestigious award is given to the best final year undergraduate research project of the Department of Chemical and Process Engineering, provided the group of students obtain a grade of 'A' or above.

Convocation Awards

Gold Medal awarded by the Hayleys Group

Awarded to the undergraduate of the DCPE who obtains the highest Overall GPA at the BSc. Engineering Degree Examination, provided that the student obtains an Overall GPA of 3.8 or above and is awarded at the General Convocation.

Most Outstanding Graduand of the year

This prestigious award is presented to the most outstanding graduate of the year of the Faculty of Engineering and is awarded at the General Convocation. The awardee is expected to display an exceptional academic standing with a GPA exceeding 3.7; First Class Honors, also demonstrating excellent leadership qualities, and also a person who has made a significant contribution through participation and service to the university and community.

Vidya Jyothi Professor Dayantha S. Wijeyesekera Award

This prestigious award is presented to the most outstanding graduate of the year of the University of Moratuwa and is awarded at the General Convocation. The awardee is expected to display an exceptional academic standing with a GPA exceeding 3.7; First Class Honors, also demonstrating excellent leadership qualities, and also a person who has made a significant contribution through participation and service to the university and community.

INDUSTRY COLLABORATION

Mentoring

Mentoring is to support and encourage the students to manage their own learning and behavioural while maximizing and enhancing their potential, soft-skills, performance, and becoming a competent and a self-confident person. Unique and distinguished industrial from related industries personals are connected with students through the department in order for the students to get an intimate experience in the industry surroundings. During a period of 13 weeks in semester IV and V, each group of students are assigned a mentor and students are to travel the mentor's organization. Some of the key elements focused by the mentors are leadership skills, communication skills, teamwork, attitude, etiquette, and personal grooming. This course provides the students a virtuous opportunity to extend themselves as a well- rounded person who is well equipped for the future.

Department Industry Consultative Board Meeting (DICB)

Department Industry Consultative Board (DICB) Meeting aids the department to meet industry representatives from several recognized industries. This has benefits for both parties. While the department seeks industry expertise to revise and renew its curriculum to meet the dynamic demand in the field, industry get the assistance of the department to address their various problematic situations.

Consultancy Services

The department is at all times approached by the industry to seek solutions for their problems and to assist in enhancing their performance. Department might act like a third party in assisting them while sometimes directly engaged in the research and development work under a contract with the interested party. Students who are enthusiastic in engaging in these work might have a chance to work with the academic staff and gain valuable knowledge and experience.

Field Visits

The department arranges field visits for the students to visit the industries and get an insight into the processes and working environment. This allows the students to expand their knowledge and experience which otherwise would be limited to lectures and books.

Among the most recent field visit destinations are,

- Lakvijaya Power Station, Norochcholai
- Phoenix Industries Ltd., Makandura
- Lanka Sugar Company, Sewanagala
- Nestlé Manufacturing Facility, Pannala
- Lion Brewery PLC, Biyagama
- Haycarb PLC (Virtual tour during COVID-19 pandemic)

Incubators

SIL-UOM Rubber Products and Process Development Incubator

Director – Prof. Jagath Premachandra

UOM-SIL Rubber Products and Process Development Incubator is a model for the University and Sri Lankan industry partnerships in research and development. It was established in the DCPE in the year 2011 in collaboration with Samsons International PLC. Later, Samson Compounds (Pvt) Ltd. joined as a partner of the Incubator. D. Samson Industries (Pvt) Ltd. also became a partner of the Incubator in December 2019. The incubator is a common platform on which the university academics and members of the research and development divisions in the DSI companies group of engage in the development of products rubber and manufacturing processes. The projects undertaken by the incubator includes trouble shooting, problem solving, new product and process development and process modification.

DCPE undergraduates are also benefitted by the incubator. They can obtain real industrial exposure and improve their theoretical knowledge and practical skills by participating in research and development activities. In addition, they are able to enhance the ability of analytical thinking and the capacity of innovation.

COLLABORATIONS WITH INTERNATIONAL UNIVERSITIES

- East China University of Science and Technology for petroleum process engineering.
- Europe Sri Lanka capacity building in energy circular economy "EUSL Energy" online digital joint master's degree program.
- A joint study program and student-staff exchange program with Sirindhorn International Institute of Technology, Thammasat University.

SPECIAL EVENTS AND PROGRAMS

Annual General Meeting (AGM)

Annual gathering of Chemical and Process Engineers of University of Moratuwa is organized by the ChESS with the participation of department's undergraduate, graduates, academic staff and the representatives from the industries. Most recently, the 2018 event was held at Sri Lanka Foundation Institute. The night with magnanimous meetings with industrial leading characters passed out from University of Moratuwa was a precious occasion for chemical and Process Undergraduates to meet their role models.

Yaye Padura

An evening with glorious musical spills over the "Yaye Padura" which is another foremost event annually functioning at the department courtyard, organized by the fresh siblings of the department family in order to facilitate the interaction between undergraduate students of the DCPE as well as to make a stage to express instrumental, vocal and dancing talents of department students and staff.

'EXORIOR'

the Latin word "Exorior" narrates exuberant actions like rising up, coming forward and cheering. As the name proposes, the event Exorior is a vigorous full day program organized to provide a prodigious platform for our undergraduates to develop their team building skills including leadership skills, creative thinking and interpersonal skills by actively participating in team activities and interacting with each other in a friendly and enthusiastic environment.

Most recently the 2018 event was organized under the theme, 'Awaken the leader within you'. The program was held with the presence of undergraduates of Level 02, 03 and 04, post graduate students, non-academic staff and the academic staff. The agenda consisted of various activities, which helped each and every participant to improve his/her abilities and skills in areas of teamwork and personality development. All the participants irrespective of their age or level spent a day full of friendship and life and were able to gain a glimpse of experiences and strengthen their bonds.

CPE Sports Fiesta

Another annual interactive event organizing by the Level 02 students of the DCPE is CPE Sports Fiesta. This is a sports day that brings all the joys, bonds, freedom and an inestimable change from the impassable academic matters for all students, academic and non-academic staff family members of DCPE.

Chemical Engineering Conference (ChemECon)

This event focuses on portraying the potential of undergraduates and fresh graduates in the Chemical and Process Engineering Department of University of Moratuwa.

The primary objective of the event being bridging the gap between industry and university research and innovation arena in the field of Chemical and Process Engineering, the event showcases the final year research studies and industrial projects conducted by the students of the department.

For the first time ChemECon 2020 was held under the theme of "Solution worth spreading". The event comprised of three sessions; the main event and two breakout sessions which were held parallelly on the day of the event. The breakout sessions were conducted under two themes, "Product and process optimization" and "Sustainable technologies & environmental remediation" which focused on two separate areas in the chemical and process industry. The 'Union Chemicals Award for the Best Presentation' was also awarded in all breakout sessions.

SOCIETIES/CLUBS

Chemical Engineering Student Society (ChESS)

Senior Treasurer: Prof: Jagath Premachandra

The Chemical Engineering Student Society was formed in the year 2004. It is dedicated to building a responsibility among undergraduates to integrate social concerns into their academic lives. Through a variety of interdisciplinary activities, focusing on leadership development and interactive learning, ChESS at UoM strives to work together with industrial, social and student communities.

Specific objectives of the ChESS include,

- Enhancing the involvement of the Chemical and Process Engineering students in industry related activities and projects
- Improving the interaction with the society through socially beneficial activities
- Sharing knowledge with school children through interactive activities and projects

Activities

• Organizing the Annual General Meeting, of DCPE, providing a great opportunity for the members of the CPE family to interact with each other. At the AGM undergraduates and postgraduates have the opportunity to meet each other as well as their dearest academic staff.

• Annually publication of the magazine "Chemunique" which has a wide circulation.

Research for Undergraduates (R4U) Club

Senior Treasurer: Dr. Thilini U. Ariyadasa

The Research for Undergraduates Club was initiated in 2019, with the aim of providing a better understanding on research and its importance to DCPE undergraduates. The intention of the club is to perform as a knowledge sharing platform, by providing guidance to enhance the research skills of the club members through workshops, lectures, peer mentoring, networking with research communities and by providing hand-on experience in research. Through these activities, it is expected to develop personal and academic skills of club members, which in turn would create positive impacts on further development of the country.

Objectives of R4U include,

• Providing opportunities for the club members to get exposure to the area of research and to enhance their research skills/improve knowledge.

- Guiding members to engage in research through workshops, lectures, peer mentoring and networking with the research community.
- Providing guidance to conduct research and publish the research outcomes.
- Supporting academic and personal development of the club members.

Activities

- Explorer, an interactive series of sessions conducted to spread awareness to club members about the opportunities and pathways available beyond the discipline of chemical and process engineering.
- The R4U club acts as a platform to link available research projects and club

members, thereby facilitating hands-on experience in research work and teamwork.

Alumni Association

The Alumni Association of the DCPE is the hub that reconnects all passed out graduates of the department, young and old. Its prime objective is to enhance a continuing relationship between the department and its older generations. Alumni membership is open to all graduates from the department.

LABORATORY FACILITIES AND RESOURCES

Laboratory Facilities

The DCPE is proud to have a well-equipped and well-functioning set of laboratories that facilitate both undergraduates and postgraduate students with their experimental work and research. At present, the department is in the process of establishing and developing new laboratory facilities with 24 hours access for facilitating the students to conduct long-term experiments and research. The assistance of the competent and the wellqualified technical officers and the technical assistance staff members for the experimental work and research activities is also significant.

Unit Operations/ Pilot Plant Laboratory

Lecturer in Charge: Dr. Duleeka Gunarathne Technical Officer: Mr. B. H. P. Mahendra Boiler Operator: Mr B. A. R. D. Abeywardena Lab Attendant: Mr. Viraj Somarathna

Unit operations are the basic physical operations of Chemical Engineering. The Unit Operations Laboratory of the department is well-equipped to conduct both laboratory scale and pilot scale experiments, allowing students to gain hands-on experience with the fundamental principles practical and applications of chemical engineering. The apparatus for distillation, evaporation, crystallisation, heat transfer, retort processing, filter press, fluidized bed, mixing and centrifugation and are few of the outstanding equipment in the laboratory.

Polymer Physical Testing and Latex Laboratory

Lecturer in Charge: Prof. Jagath Premachandra Technical Officer: Mrs. Shameera De Silva Lab Attendant: Mr. D. S. Dayananda

The Latex Technology Laboratory of the department is equipped with latex characterization instruments for latex product manufacture while it is also equipped with several instruments to measure chemical properties of polymer. Also, instrumentation to analyse various properties of rubber and plastic such as physical, mechanical and thermal properties namely; specific gravity, rebound resilience, tensile and compression, abrasion resistance, melt flow index and other are available in this laboratory

Process Control Laboratory

Lecturer in Charge: Prof. Mahinsasa Narayana Technical Officer: Mrs. H. B. R. Sajeewani Lab Attendant: Mr. D. S. Dayananda

Design and operation of processes that are safe, meet the production requirements with high quality with profit are the premier objectives of a Chemical and Process Engineer. Therefore. the process instrumentation and control are vital aspects to be mastered by the students. The Process Instrumentation and Control Laboratory of the department is equipped with various process modelling and simulation facilities such as process simulator, numerical control, process feedback control study unit to enhance the student competencies.

Industrial Chemistry Laboratory

Lecturer in Charge: Prof. Jagath Premachandra Technical Officer: Mrs. Indika Athukorala Lab Attendant: Mr. Gihan Peiris

The Industrial Chemistry Laboratory supports many course modules for both undergraduate and postgraduate studies through several experimental setups and by facilitating research activities.

Reactor Engineering Laboratory

Lecturer in Charge: Dr. Manisha Gunasekera Technical Officer: Mrs. Indika Athukorala

Lab Attendant: Mr. Gihan Peiris

Reactor Engineering is one of the core modules in chemical and process engineering. The Reactor Engineering Laboratory is equipped with facilities including a batch reactor and a plug flow reactor which provides students with hands-on experience in different reactor types.

CAPD /CAM Centre

Lecturer in Charge: Dr. Mahinsasa Rathnayake System Analyst: Mr. Chinthaka Narangoda Technical Officer: Mrs. H. B. R. Sajeewani Lab Attendant: Mr. Asanka Kumara

The centre facilitates the studies with experience in many process simulation applications. It is being used to offer many useful software packages such as AutoCAD, SolidWorks, LabVIEW, MATLAB and Simulink, Scilab, Aspen Plus etc., that are particularly useful in the industry of Chemical and Process Engineering. The centre supports academic activities by providing internet access to gather necessary resources for their studies.

Environmental Engineering Laboratory

Lecturer in Charge: Prof. P. G. Rathnasiri Technical Officer: Ms. Dineshi Rodrigo Lab Attendant: Mr. B. Karunathilake

The Environmental Engineering Laboratory facilitates experience necessary and knowledge in environmental engineering. It is equipped with lab-scale and pilot-scale equipment facilities related to wastewater and solid waste treatment. Facilities are available to determine key parameters related to water/wastewater analysis. Pilot-scale experimental setups are available to conduct experiments under aerobic and anaerobic waste treatment processes. Furthermore, online data acquisition and monitoring of anaerobic waste treatment processes are conducted using newly automated reactor systems.

Transport Phenomena Laboratory

Lecturer in Charge: Prof. Shantha Amarasinghe Technical Officer: Mr. B. H. P. Mahendra Lab Attendant: Mr. Viraj Somarathna

Transport Phenomena Laboratory has been developed as an undergraduate teaching laboratory. The main focus is to demonstrate the fundamental concepts in heat, mass and momentum transport. Students are encouraged to learn through hands-on experiences. Rankine Cycler is the latest arrival to the lab. Students are able to understand the fundamentals of steam power generation and familiar with the associated become thermodynamic principles and efficiencies of the Rankine power cycle. The laboratory is further equipped with the following teaching units.

- Flow measurement unit
- Centrifugal pump demonstration unit
- Equipment test bench to study analogy between fluid friction and heat transfer
- Apparatus for determining heat loss from bare and lagged pipes
- Computer controlled gaseous mass transfer and diffusion coefficient unit
- Computer controlled liquid mass transfer and diffusion coefficient unit

STUDENT HANDBOOK 2020 INTAKE

Polymer Processing Laboratory

Lecturer in Charge: Prof. (Mrs.) Shantha Egodage Technical Officer: Ms. Harshani Hettiarachchi Lab Attendant: Mr. U. K. D. D. N. Gunasekara

The Polymer Processing Laboratory provides the students with the opportunity to gain experience in polymer processing techniques. This laboratory offers a wide range of pilot plant scale machinery for mixing and subsequent processing of both plastic and rubber, including an injection molding machine (plastic), blow molding machine (plastic), extruders with single and double screws (plastic), hot feed extruder (rubber), internal mixer, two-roll mill, plasticorder, presses, oscillating disc rheometer and processability testing equipment.

Microbiology Laboratory

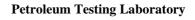
Lecturer in Charge: Dr. (Mrs.) Thilini Ariyadasa Technical Officer: Mrs. Indika. Athukorala Lab Attendant: Mr. B. Karunathilake

Microbiology Laboratory of DCPE is focused on understanding the diverse cellular and metabolic processes of microbes for the production of pharmaceuticals, chemicals and energy. The laboratory is equipped with autoclave, incubators, incubator shakers, centrifuges, colony counter, class II biosafety cabinet, -20°c freezer and also state of the art equipment including PCR machine, horizontal gel electrophoresis system, gel documentation system and microscopy core facilities essential for the advance research in the area of metabolic engineering.

Food Engineering Laboratory

Lecturer in Charge: Ms. Peshalya Kothalawala Technical Officer: Mrs. Ishara Gayani Lab Attendant: Mr. Asanka Kumara

Food Engineering Laboratory facilitates the students with experimental and research work on food-biochemistry, and food process engineering. The laboratory is equipped with a spray dryer, retort sterilizer, freeze dryer, fruit juice extractor, dough mixer and other ancillary units required in food processing.



Analytical Instruments Centre

Lecturer in Charge: Prof. Jagath Premachandra Technical Officer: Mr. Dinuka Wijegunarathne Lab Attendant: Mr. Gihan Peiris

Instrumentation is vital for proper measurement and controlling of processes. The Process Instrument Centre of the DCPE consists of advanced modern analytical measurements. The Gas Chromatograph, High Performance Liquid Chromatograph, Differential Scanning Calorimeter, Particle Size Analyser and UV Spectrophotometer are among these instruments. This centre provides a combination of testing facilities for academia and industrial purposes.

Both undergraduates and postgraduates experience the techniques used in qualitative analysis and quantitative analysis related to their subject modules and research projects by using the instruments in the Instrument Centre. For instance, they learn to identify the unknown components in a mixture and to determine the relative amounts of the components therein. Further, they can analyze the progress of a reaction.

Lecturer in Charge: Dr. Thushara Subasinghe Technical Officer: Mrs. Hasini Gunarathna Lab Attendant: Mr. S. M. R. N. Dhammika

The Petroleum Testing Laboratory is equipped with the newest laboratory instruments to facilitate students with experimental work on petroleum engineering. The automated vacuum distillation unit, sulphur analyser, octane analyser, bomb calorimeter and viscometer bath are only a few experimental setups in the laboratory. As well, it is equipped with the necessary apparatus to provide the student with knowledge and experience in energy engineering and fuel technology. The laboratory includes many apparatuses such as the soxhlet apparatus, Reigdens specific surface apparatus, the Mohr westphal balance, the Pensky Martens closed cup and Cleveland open cup, Engler viscometer and Saybolt universal viscometer, Penetrometer, Universal torsion viscometer, Pilot plant leaching unit, etc.

STUDENT HANDBOOK 2020 INTAKE

24-hour-Research Laboratory

Lecturer in Charge: Dr. Dilhara Sethunge Technical Officer: Mrs. Ishara Gayani Lab Attendant: Mr. B. Karunathilake

24 hours laboratory is a research laboratory providing facilities for research students to work around the clock. The DCPE offers research programs leading to PhD, MPhil and MSc. Two separate laboratory units are currently available with basic facilities for the research students to set up their test rigs and other equipment required for their experimental work. Computer facilities are also provided with unlimited access. Undergraduate students with research projects involving longer time durations for their experimental work are also encouraged to use 24 hours laboratory.

Resources

Prof Hubert D J Silva Memorial Resource Centre

The DCPE offers the students with access to a valuable collection of literature, specialising in the field of Chemical and Process Engineering. The Resource Centre is full of worthy reference material relevant to many branches of Chemical and Process Engineering, facilitating both the undergraduates and postgraduates with their academic and research activities.

Student Common Room

The Student Common Room is established to provide the undergraduates with an opportunity to socialize themselves.

Wi-Fi Access Facility

The students are provided with Wi-Fi facilities to acquire necessary knowledge and reference materials that are required for their academic studies and activities.

Study Zones

Spaces have been provided for the students with seating arrangements and Wi-Fi facilities to engage in academic activities and studies such as group activities and discussions.

DCPE.me – Microlearning Platform for Undergraduates at the Department

Microlearning is a novel pedagogical approach which deals with relatively small learning units. DCPE.me is a microlearning platform specially customized for the DCPE where lecturers, external resource persons and students interact with small learning units from the course modules or relevant topics in Chemical Engineering so that students can develop interest for exploring more on their own. The platform uses features of online social networks to boost interaction between lecturers, external experts, and students. For more information and to experience the platform, visit www.dcpe.me.

Operational Hours and Access to Laboratory Facilities and Resources

DCPE is usually open for academic work from 8.00 a.m. to 4.15 p.m.

All laboratory facilities in DCPE are available for students strictly during the scheduled practical sessions, and students should not use and interfere with any equipment without the permission of the Lecturer in Charge or under the guidance of a Laboratory Instructor.

The CAPD/ CAM Centre is open from 8.00 a.m. to 8.00 p.m. on weekdays and from 8.00 a.m. to 4.00 p.m. on Saturdays.

At present, all other facilities, excluding 24-hour laboratory facilities are available during working hours only.

OTHER INFORMATION

Getting Help and Advice

A full-time professional counsellor is employed by the University to provide professional counselling to the students who require special attention.

Career guidance unit of the UOM plays an important role in developing University-Industry links and provide necessary guidance for the students to select their future career.

To address common student problems, the faculty of engineering has further appointed a Staff-Student Liaison Committee at faculty level which has representatives comprising senior academic staff members of the faculty and nominees from respective student groups. The department Staff-Student Liaison Committee helps to solve issues related to academic work, facilities, etc.

The office of the Director of Undergraduate Studies provides guidelines, performance criteria and registration procedures to students. The student performance records are also available at this office for their perusal, allowing the students to plan their academic activities accordingly.

The DCPE staff was reported as one of the friendliest in the faculty (SWOT analysis report, IRQUE reviewers report). This encourages the students to approach the staff members about their problems to discuss at personal level.

The DCPE has appointed semester coordinators to guide the students on subject selection and other academic issues related to each semester. The DCPE has also appointed advisors for each student to provide guidance and necessary counseling on academic and personal problems during their stay in the University.

The students are given a module outline and lecture schedule at the beginning of the semester for each subject. This gives the course objective, learning outcomes, subject coordinator, lecturers, module content, evaluation criteria and a list of references.

The students are strongly encouraged to discuss the subject matter with the respective subject coordinator or the lecturers.

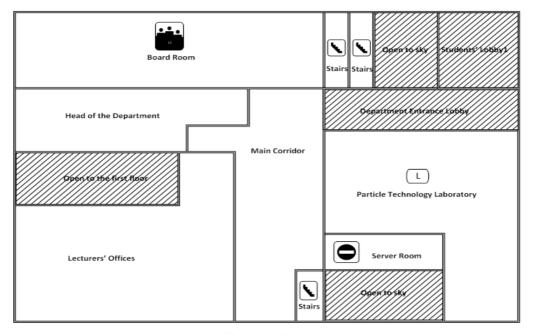
Institute of Engineers (IESL) Membership

The Institute of Engineers (IESL) is the premier engineering body of Sri Lanka. Members benefit by the development of individual's professional career and building network of technical and social contacts.

We encourage all CPE students to apply for the student membership category. For further information, contact the Industrial Training Division, University of Moratuwa.

AmericanInstituteofChemicalEngineers (AIChE)StudentChapter

Academic coordinator - Snr. Prof. Ajith De Alwis

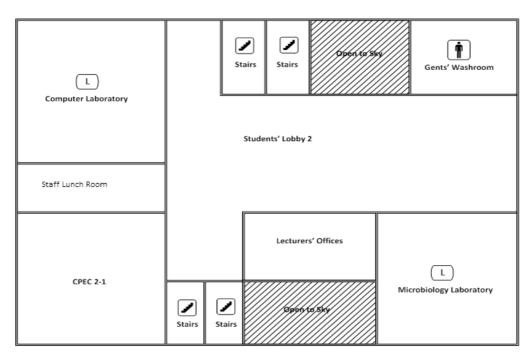

The AIChE Student Chapter of University of Moratuwa is an association formed by students of DCPE at University of Moratuwa in collaboration with AIChE which is a professional association of more than 50,000 members that provides leadership in advancing the chemical engineering profession.

The AIChE Student Chapter of University of Moratuwa is dedicated to providing its

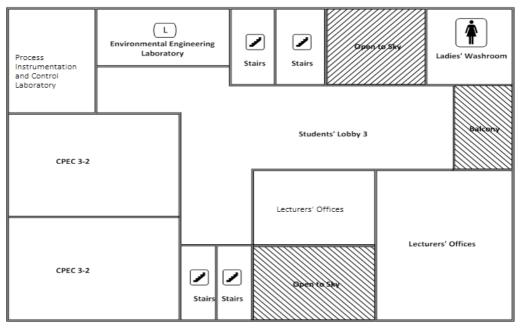
members with experiences to take a step beyond class and expand the skills and knowledge obtained during their university years.

As a professional community consists of students, AIChE Student Chapter of University of Moratuwa arranges opportunities for students to build a network of contacts in academia and in industry, fosters and disseminates chemical and process engineering knowledge and concepts used in the industry, supports the professional and personal growth of its members, and applies the expertise of its members to address societal needs.

FLOOR PLAN OF DCPE CENTER



Ground Floor


Basement

First Floor

Second Floor

FLOOR PLAN OF DCPE NORTH AND SOUTH WINGS

@	03	04 05	06	07	08	09	10	1	01 - DCPE Main Building 02 - Technical Officer Room 03 - Seminar Room
	01				Gard	en			04 - Resource Center 05 - 24 Laboratory 1 06 - Environmental Laboratory 07 - Lecturer Room 08 - Instructor Room 09 - 24 Laboratory 2 10 - Food Laboratory 11 - Post Graduate Student Room 12 - DSI Incubator 13 - Physical Testing Lab 14 - Latex Laboratory 15 - 28 Room 16 - Waste Based Composite Processing Laboratory 17 - Chemistry Laboratory
12	13	14	(5)	16	1	18	19	20	18 - 24 Laboratory 3 19 - Glass Blowing Unit 20 - Common Room

North and South Wings