Curriculum

The following description is followed.

C - Core Modules

E - Elective Modules

Semester 1		S	pecializ	ation re	15.0					
			Hours/	Week	Cre	dits	No	rm	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CE1023	Fluid Mechanics	С	2	2/4	2.0				20	80
CS1033	Programming Fundamentals	С	2	2	2.0				20	80
EE1040	Electrical Fundamentals	С	2	2/4	3.0				20	80
MA1014	Mathematics	С	5/2	1	3.0		15.0		20	80
ME1033	Mechanics	С	2	2/4	2.0				20	80
MT1023	Properties of Materials	С	2	2/4	2.0				20	80
EL1030	Language Skills Enhancement [S1 & S2]	С	0	2	1.0				100	0
]	lotal f	for sem	ester 1	15.0	0.0	15.0	0.0		
Semester 2		S	pecializ	ation re	equirem	ent	20	.0		
CH1051	Engineering Thermodynamics	С	2	2	3.0				40	60
CH1044	Fluid Dynamics	С	3	2	4.0				40	60
CH1071	Chemistry and Green Chemistry for Process Engineers	С	2	2	3.0		18.0		40	60
CH1061	Chemical and Bioprocess Engineering Principles	С	3	2	4.0				40	60
MA1024	Methods of Mathematics	С	5/2	1	3.0				30	70
EL1030	Language Skills Enhancement [S1 & S2]	C 0 2			1.0				100	0
HM-1	Humanities I E 2 0			2.0		2.0		100	0	
Total for semester 2					20.0	0.0	20.0	0		

Semester 3		Specialization re				ent	20	.0		
			Hours	/Week	Cre	dits	Noi	rm	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH2631	Chemical Thermodynamics	С	2	2	3.0				40	60
CH2015	Heat and Mass Transfer	С	3	2	4.0				40	60
CH2160	Bioprocess Engineering and Practices	C 2 2			3.0				40	60
CH2170	Laboratory Practices I	С	C 0 6		3.0		20.0		100	0
MA2014	Differential Equations	С	2	0	2.0				30	70
MA2034	Linear Algebra	С	2	0	2.0				30	70
EN1803	Basic Electronics for Engineering Applications	С	2	2	3.0				30	70
]	Fotal f	for sem	ester 3	20.0	0.0	20.0	0.0		
Semester 4		S	pecializ	ation re	equirem	ent	22	.0		
CH2151	Particulate Systems	С	3	2	4.0				40	60
CH2180	Separation Processes	С	3	4	5.0				40	60
CH4501	Chemical Kinetics and Reactor Design	С	3	2	4.0		20.0		40	60
CH2210	Materials for Engineering Applications	С	2	2	3.0		20.0		30	70
CH2270	Laboratory Practices II	C 0 4			2.0				100	0
MA3024	Numerical Methods	C 2 0			2.0				30	70
HM-2	Humanities II	E 2 0			2.0		2.0		100	0
	Total for semester 4				22.0	0.0	22.0	0		

Semester 5	Sp	ecializa	ntion r	equire	nent	23	.0			
			Hours/	Week	Cre	dits	No	rm	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH4045	Process Dynamics and Control	С	2	2	3.0				40	60
CH3045	Plant Safety, Health and Environment	C 7/2 1							30	70
CH3034	Process Equipment Design C 3 2								40	60
CH3055	Energy Systems EngineeringC22						21		40	60
CH3150	H3150 Chemical Process Synthesis C 2 2								40	60
CH3880	Engineer and Society [S5 & S6	С	0	2	1.0				100	0
MN3043	Business Economics and Financial Accounting	С	3	0	3.0				30	70
MA3014	Applied Statistics	Е	2	0	2.0				30	70
MA2024	Calculus	Е	2	0	2.0		2		30	70
MA3030	Operational Research	Е	2	0	2.0				30	70
	То	tal fo	al for semester 5 27.0 0.0				23.0	0.0		
Industrial 7	Fraining	Sp	ecializa	ntion r	equire	nent	6.	0		
CH3994	Industrial Training	С				6.0		6.0	100	0
	Total for In	dustri	ial Trai	ning		6.0	0.0	6.0		
Semester 6		Specialization 1					9.	0		
EL3820	Technical Report Writing and Presentation Skills	С	1	4	3.0				100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0		9.0		100	0
CH3170	Laboratory Practices III	С	0	6	3.0				100	0
CH3880	CH3880 Engineer and Society [S5 & C 1 2 S6]								100	0
Total for semester 6				9.0	0.0	9.0	0.0			

	Semester 7	ter 7 Specialization r						3.0		
			Hours/V	Veek	Cre	dits	No	rm	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH4016	Comprehensive Design Project I	C	0	8	4.0				100	0
CH4751	Research Project [S6, S7 & S8]	C	0	2	1.0		7.0		100	0
MN4023	Engineering Economics	С	2	0	2.0				30	70
CH4120	Biofuels and Biorefineries	Е	2	2	3.0				40	60
CH4130	Process Optimization	Е	2	2	3.0				40	60
CH4140	Biotechnology	Е	2	2	3.0		3.0		40	60
CH4160	Process Chemicals Management	Е	2	2	3.0				40	60
CH4371	Petroleum Trade and Economics	Е	2	2	3.0				30	70
CH4410	Polymeric Materials	Е	2	2	3.0				30	70
CH4026	Process Modelling and Simulation	Е	2	2	3.0				40	60
CH4420	Waste Minimization and Resources Recovery	Е	2	2	3.0		3.0		30	70
CH4430	Industrial Chemical Manufacturing Processes	Е	2	2	3.0				40	60
CH4235	Polymer Processing Operations	Е	2	2	3.0				30	70
CH3720	Waste to Energy	Е	2	2	3.0				40	60
CH3253	Environmental Bioengineering	E	2	2	3.0				30	70
CH4440	Petrochemical Process Operations	Е	2	2	3.0				30	70
CH4285	Food Safety and Hygienic Plant Design	Е	2	2	3.0				40	60
Total for semester 7					49.0	0.0	13.0	0.0		

Semester 8 Special			ecializ	ation	requirem	ent	10.	0		
			Ho /W	urs eek	Cred	lits	Nor	m	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH4035	Comprehensive Design Project II	С	0	10	5.0				100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0				100	0
MN4151	Project Management	С	2	0	2.0		10.0		30	70
MN4113	Production and Operations Management	С	2	0	2.0				30	70
CH4275	Polymer Products Manufacturing Technologies	Е	2	2	3.0				40	60
CH4742	Polymer Products and Tool Design	Е	2	2	3.0				40	60
CH4450	Energy Storage Systems	Е	2	2	3.0				40	60
CH4255	Renewable Energy	Е	2	2	3.0				40	60
CH4651	Combustion Technology	Е	2	2	3.0				40	60
CH4215	Environmental Engineering and Management	E	2	2	3.0				30	70
CH4460	Sustainable Process Technology	Е	2	2	3.0				30	70
CH4351	Up-stream Oil and Gas Operations	Е	2	2	3.0				30	70
CH4381	Petroleum Refining Operations	Е	2	2	3.0				30	70
CH4294	Bioengineering	Е	2	2	3.0				40	60
CH4691	Food Process Engineering	E 2 2		3.0				40	60	
	То	Total for semester 8		43.0	0.0	10.0	0.0			
		Gra	nd to	tal	205.0	6.0	132.0	6.0		

STUDENT HANDBOOK 2020 INTAKE

Focus Area

			Ho W	urs/ eek	Cre	dits	Evalu	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
Focus area	-Polymer Engineering									
CH4410	Polymeric Materials	С	2	2	3		30	70	7	
CH4235	Polymer Processing Operations	С	2	2	3		30	70	7	
CH4275	Polymer Products Manufacturing Technologies	С	2	2	3		40	60	8	12
CH4742	Polymer Products and Tool Design	С	2	2	3		40	60	8	
Focus area	- Food and Bioengineering									
CH4140	Biotechnology	С	2	2	3		40	60	7	
CH4285	Food Safety and Hygienic Plant Design	С	2	2	3		40	60	7	12
CH4294	Bioengineering	С	2	2	3		40	60	8	
CH4691	Food Process Engineering	С	2	2	3		40	60	8	
Focus area	- Environmental Engineering									
CH4420	Waste Minimization and Resources Recovery	С	2	2	3		30	70	7	
CH3253	Environmental Bioengineering	С	2	2	3		30	70	7	10
CH4215	Environmental Engineering and Management	С	2	2	3		30	70	8	12
CH4460	Sustainable Process Technology	С	2	2	3		30	70	8	
Focus area	- Petroleum Engineering									
CH4371	Petroleum Trade and Economics	С	2	2	3		30	70	7	
CH4440	Petrochemical Process Operations	С	2	2	3		30	70	7	12
CH4351	Up-stream Oil and Gas Operations	С	2	2	3		30	70	8	
CH4381	Petroleum Refining Operations	С	2	2	3		30	70	8	
Focus area	- Energy Engineering						·			
CH4120	Biofuels and Biorefineries	С	2	2	3		40	60	7	
CH3720	Waste to Energy	С	2	2	3		40	60	7	9
CH4450	Energy Storage Systems	С	2	2	3		40	60	7	
CH4255	Renewable Energy	Е	2	2	3		40	60	8	3
CH4651	Combustion Technology	Е	2	2	3		40	60	8	5

Minors

Students following the Chemical and Process Engineering program can obtain minors in by fulfilling following subject requirements.

			Hou We	rs/ ek	Cred	lits	Evalua	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
EL2410	Introduction to Literary Criticism	Е	3		3.0		100		3	3
EL2420	Introduction to Poetry and Drama	Е	3		3.0		100		4	
EL3410	Contemporary South Asian Writing	Е	3		3.0		100		5	0
EL4410	Literature and Translation	Е	3		3.0		100		7	9
EL4420	Science Fiction: Cyborgs and Dystopia	Е	3		3.0		100		8	
	,	Total								12

Minor in English Literature

Minor in English for Academic and Professional Purposes

			Hou We	rs/ ek	Cred	lits	Evalua	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
EL2510	Academic Writing for Engineering Studies	Е	3		3.0		100		3	
EL2520	Technical Report Writing for Engineering Studies	Е	3		3.0		100		4	
EL3510	Professional Communication for Engineering Contexts	Е	3		3.0		100		5	12
EL4510	Research Communication for Engineering Studies	Е	3		3.0		100		7	
EL4520	Journalism and Journalistic Writing	Е	3		3.0		100		8	
	Total							12		

Minor in Mathematics

			Ho W	urs/ eek	Cred	lits	Eva	luation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
MA2014	Differential Equations	С	2		2.0		30	70	3	2
MA2024	Calculus	С	2		2.0		30	70	3,5	2
MA2034	Linear Algebra	С	2		2.0		30	70	3,4	2
MA3014	Applied Statistics	С	2		2.0		30	70	3,4,5	2
MA3024	Numerical Methods	С	2		2.0		30	70	3,4,5	2
Electives fo	r Statistics Minor									
MA4014	Linear Models and Multivariate Statistics	Е	3		3.0		30	70	7,8	
MA4090	Mathematical Statistics	Е	3		3.0		30	70	7,8	
MA4034	Time Series and Stochastic Process	Е	3		3.0		30	70	7,8	3
MA4000	Experimental Design and Quality Control	Е	3		3.0		30	70	7,8	
Electives fo	r Mathematics Minor									
MA4110	Finite Element Analysis	Е	3		3.0		30	70	7,8	
MA4120	Advanced Differential Equations	Е	3		3.0		30	70	7,8	
MA4130	Optimization	Е	3		3.0		30	70	7,8	
MA4144	Neural Networks and Fuzzy Logic	Е	3		3.0		30	70	7,8	
MA4150	Financial Mathematics	Е	3		3.0		30	70	7,8	
MA4160	Advanced Operational Research	Е	3		3.0		30	70	7,8	3
MA4210	Mathematical Analysis and Special Functions	Е	3		3.0		30	70	7,8	
MA4220	Topics in Algebra and Topology	Е	3		3.0		30	70	7,8	
MA4230	Number Theory and Cryptography	Е	3		3.0		30	70	7,8	
MA4240	Mathematical Methods in Theoretical Physics	Е	3		3.0		30	70	7,8	
		Та	otal							13

Minor in Mathematics: A minor in mathematics is awarded if a student meets the following minimum requirements:

- MA2014, MA2024, MA2034, MA3014 and MA3024
- For the minor in Statistics (At least one module from MA40xx)
- For the minor in Mathematics (At least one module from MA41xx or MA42xx)

Minor in Entrepreneurship

			Hou We	ırs/ ek	Cree	lits	Evalı	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%	Semester	Credits requi
MN2020	Entrepreneurship Theory	С	3		3.0		50	50	2	3
MN3021	Entrepreneurship Business Basics	С	3		3.0		50	50	4	3
MN3011	Multidisciplinary Design, Innovation and Venture Creation	С	2		2.0		50	50	5	2
MN4011	Business Plan Development	С	2		2.0		40	60	8	2
MN3053	Industrial Management and Marketing	Е	3		3.0		30	70	5	
MN3043	Business Economics and Financial Accounting	Е	3		3.0		30	70	5	2
MN4023	Engineering Economics	Е	2		2.0		30	70	7	
MN4093	Management Skills Development	Е	2		2.0		30	70	8	
		To	otal							12

			Ho We	urs/ eek	Cred	lits	Eval	uation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	%VO	WE%	Semester	Credits requi
EN3150	Pattern Recognition	С	2	2	3.0		70	30	5	
EN3330	Introduction to Engineering Optimization	С	2	2	3.0		70	30	6	6
EN4640	Statistical Signal Processing	Е	2	2	3.0		60	40	7	
EN4554	Deep Learning for Vision	Е	2	2	3.0		60	40	7	
EN4574	Advanced Pattern Recognition	E	2	2	3.0		60	40	8	6
EN4730	Convex Engineering Design	Е	2	2	3.0		70	30	8	
EN4470	Probabilistic System Analysis	E	2	2	3.0		60	40	8	
		То	otal							12

Minor in Pattern Recognition

Faculty Electives

Semester 2							
		Hours/	Week	Cred	lits	Evalua	ation
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
CS2813	Visual Programming	1	2	2.0	-	40	60
CS2843	Computer Systems	2	2	3.0	-	40	60
EN1055	Introduction to Telecommunications	2		2.0	-	40	60
EN1803	Basic Electronics for Engineering Applications	2	2	3.0	-	40	60
ME1803	Introduction to Manufacturing Processes	2	2	3.0	-	40	60
MN2020	Entrepreneurship Theory	3		3.0	-	50	50

Semester 3							
		Hours/Week		Credits		Evaluation	
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
CE2830	Road Safety and User Behaviour	2	2	3.0	-	50	50
CS2813	Visual Programming	1	2	2.0	-	60	40
ER2631	Elementary Gemmology	3/2	2/2	2.0	-	30	70
ER2210	Subsurface Ventilation	2	0	2.0	-	30	70
EE2804	Applied Electricity	2	2	3.0	-	40	60
EN1803	Basic Electronics for Engineering Applications	2	2	3.0	-	40	60
ME1803	Introduction to Manufacturing Processes	2	2	3.0	-	40	60
ME1823	Fundamentals of Engineering Thermodynamics and Applications	5/2	2/2	3.0	-	30	70
LT2030	Operations Engineering	4/2	4/2	3.0	-	40	60
LT2050	Principles of Supply Chain Engineering	4/2	4/2	3.0	-	40	60
MA2014	Differential Equations	2	-	2.0	-	30	70
MA2024	Calculus	2	-	2.0	-	30	70
MA2034	Linear Algebra	2	-	2.0	-	30	70
MA3014	Applied Statistics	2	-	2.0	-	30	70
MA3024	Numerical Methods	2	-	2.0	-	30	70
EL2410	Introduction to Literary Criticism	3	-	3.0	-	100	-
EL2510	Academic Writing for Engineering Studies	3	-	3.0	-	100	-

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 4	Semester 4								
		Hours/	Week	Cred	lits	Evaluation			
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%		
BM2860	Biomedical Engineering and Applications	2	2	3.0	-	40	60		
CS2833	Modular Software Development	2	2	3.0	-	50	50		
CS2023	Data Structures and Algorithms	2	2	3.0	-	40	60		
CS3033	Computer Networks	2	2	3.0	-	40	60		
EN2853	Embedded Systems and Applications	2	2	3.0	-	60	40		
EN2860	Electronic Instrumentation and Signal Processing		2	3.0	-	40	60		
ME2851	Fundamentals of Machine Elements Design	2	2	3.0	-	30	70		
ME1823	Fundamentals of Engineering Thermodynamics and Applications	5/2	2/2	3.0	-	30	70		
LT2110	Transport Demand Modelling and Simulation	4/2	4/2	3.0	-	40	60		
MA2034	Linear Algebra	2	-	2.0	-	30	70		
MA2054	Graph Theory	2	-	2.0	-	30	70		
MA3014	Applied Statistics	2	-	2.0	-	30	70		
MA3024	Numerical Methods	2	-	2.0	-	30	70		
MN3021	Entrepreneurship Business Basics	3	-	3.0	-	50	50		
EL2420	Introduction to Poetry and Drama	3	-	3.0	-	100			
EL2520	Technical Report Writing for Engineering Studies	3	3 -		-	100			

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 5									
		Hours/	Week	Credits		Evaluation			
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%		
CS3033	Computer Networks	2	2	3.0	-	40	60		
CS3413	Advanced Networking	2	2	3.0	-	40	60		
ER3420	Petroleum Engineering Upstream Processes	3	0	3.0	-	40	60		
EN3021	Digital Systems Design	2	2	3.0	-	50	50		
EN3150	Pattern Recognition	2	2	3.0	-	70	30		
EN3230	Wireless Networks	2	2	3.0	-	50	50		
EN3251	Internet of Things	2	2	3.0	-	100	0		
EN3563	Robotics	2	2	3.0	-	50	50		
TE3220	Analytics for Manufacturing and Servicing Businesses	5/2	2/2	3.0	-	70	30		
MA2024	Calculus	2	-	2.0	-	30	70		
MA3014	Applied Statistics	2	-	2.0	-	30	70		
MA3024	Numerical Methods	2	-	2.0	-	30	70		
MA3030	Operational Research	2	-	2.0	-	30	70		
MN3011	Multidisciplinary Design, Innovation and Venture Creation	2	-	2.0	-	50	50		
MN3053	Industrial Management and Marketing	3	-	3.0	-	30	70		
MN3043	Business Economics and Financial Accounting	3	-	3.0	-	30	70		
EL3410	Contemporary South Asian Writing	3	-	3.0	-	100	-		
EL3510	Professional Communication for Engineering Contexts	3	-	3.0	-	100	-		

Semester 6							
		Hours/	Week	Cred	lits	Evalua	ation
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
EN3330	Introduction to Engineering Optimization	2	2	3.0		70	30

2020 INTAKE

Semester 7							
		Hours/	Week	Cree	lits	Evaluation	
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%
BM4152	Biosignal Processing	2	2	3.0		70	30
BM4302	Medical Image Processing	2	2	3.0		70	30
BM4322	Genomic Signal Processing	2	2	3.0		50	50
CE4581	Intelligent Transportation Systems	2	1	3.0		40	60
CE4611	Sustainable design and whole lifecycle	3	0	3.0		100	0
CE4571	Operations Research for Infrastructure Systems	2	1	3.0		40	60
CH4140	Biotechnology	2	2	3.0		40	60
CH4235	Polymer Processing Operations	2	2	3.0		30	70
CH3720	Waste to Energy	2	2	3.0		40	60
CH4440	Petrochemical Process Operations	2	2	3.0		30	70
CH3253	Environmental Bioengineering	2	2	3.0		30	70
CS3121	Introduction to Data Science	2	2	3.0		40	60
CS3203	Software Engineering Project	1	4	3.0		100	
CS3501	Data Science & Engineering Project	1	4	3.0		100	
ER4730	Sustainable Consumption of Earth Resources	2	2	3.0		60	40
EE4715	Nuclear Power and Engineering Applications	2	2	3.0		40	60
EN4470	Probabilistic System Analysis	2	2	3.0		60	40
EN4554	Deep Learning for Vision	2	2	3.0		60	40
EN4640	Statistical Signal Processing	2	2	3.0		60	40
EN4594	Autonomous Systems	2	2	3.0		50	50
MT4281	Surface Engineering and Tribiology	5/2	1	3.0		40	60
MT4810	Continuum Scale Numerical Simulation of Material Systems	5/2	1	3.0		40	60
TE4290	Production Planning & Control	5/2	2/2	3.0		40	60
TE4230	Textile Composites	5/2	2/2	3.0		30	70
LT4020	Project Management and Appraisal	4/2	4/2	3.0		40	60
MA4014	Linear Models and Multivariate Statistics	3		3.0		30	70
MA4090	Mathematical Statistics	3		3.0		30	70
MA4034	Time Series and Stochastic Process	3		3.0		30	70
MA4000	Experimental Design and Quality Control	3		3.0		30	70

STUDENT HANDBOOK	2020 INTAKE
------------------	-------------

Semester 7 (continued)									
		Hours/V	Week	Credits		Evaluation			
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%		
MA4110	Finite Element Analysis	3		3.0		30	70		
MA4120	Advanced Differential Equations	3		3.0		30	70		
MA4130	Optimization	3		3.0		30	70		
MA4144	Neural Networks and Fuzzy Logic	3		3.0		30	70		
MA4150	Financial Mathematics	3		3.0		30	70		
MA4160	Advanced Operational Research	3		3.0		30	70		
MA4210	Mathematical Analysis and Special Functions	3		3.0		30	70		
MA4220	Topics in Algebra and Topology	3		3.0		30	70		
MA4230	Number Theory and Cryptography	3		3.0		30	70		
MA4240	Mathematical Methods in Theoretical Physics	3		3.0		30	70		
MN4023	Engineering Economics	2		2.0		30	70		
EL4410	Literature and Translation	3		3.0		100			
EL4510	Research Communication for Engineering Studies	3		3.0		100			

STUDENT HANDBOOK	2020 INTAKE
STUDENT HANDBOOK	2020 IN LAKE

Semester 8							
	Hours/W			Crea	lits	Evaluation	
Code	Code Module Name		Lab/ Tute	GPA	NGPA	CA%	WE%
CE4621	Engineering Response to Climate Change	3	0	3.0		100	
CS3121	Introduction to Data Science	2	2	3.0		40	60
CS3203	Software Engineering Project	1	4	3.0		100	
CS3501	Data Science & Engineering Project	1	4	3.0		100	
ER4740	Remote Sensing and GIS for Engineers	2	2	3.0		30	70
EE3064	Energy Systems	2	2	3.0		40	60
EE4380	Reliability Evaluation of Engineering Systems	2	2	3.0		40	60
EE4410	Electrical Services for Buildings	2	2	3.0		40	60
EN4574	Advanced Pattern Recognition	2	2	3.0		60	40
EN4650	Computer Systems Architecture	2	2	3.0		70	30
EN4730	Convex Engineering Design	2	2	3.0		70	30
MT4420	Energy Materials	5/2 1		3.0		40	60
MT4774	Paint Technology	5/2 1		3.0		40	60
ME2860	Automotive Technology	5/2	2/2	3.0		40	60
TE4330	Smart and Functional Textiles	5/2	2/2	3.0		40	60
MA4014	Linear Models and Multivariate Statistics	3		3.0		30	70
MA4090	Mathematical Statistics	3		3.0		30	70
MA4034	Time Series and Stochastic Process	3		3.0		30	70
MA4000	Experimental Design and Quality Control	3		3.0		30	70
MA4110	Finite Element Analysis	3		3.0		30	70
MA4120	Advanced Differential Equations	3		3.0		30	70
MA4130	Optimization	3		3.0		30	70
MA4144	Neural Networks and Fuzzy Logic	3		3.0		30	70
MA4150	Financial Mathematics	3		3.0		30	70
MA4160	Advanced Operational Research	3		3.0		30	70
MA4210	Mathematical Analysis and Special Functions	3		3.0		30	70
MA4220	Topics in Algebra and Topology	3		3.0		30	70
MA4230	Number Theory and Cryptography	3		3.0		30	70
MA4240	Mathematical Methods in Theoretical Physics	3		3.0		30	70
MN4011	Business Plan Development	2		2.0		40	60
MN4093	Management Skills Development	2		2.0		30	70
EL4420	Science Fiction: Cyborgs and Dystopia	3		3.0		100	
EL4520	Journalism and Journalistic Writing	3		3.0		100	

Humanities Subjects

Semester 2	Semester 2									
			Hours/ Week		Credits		Norm		Evaluatio n	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
HM2480	History and Development of Engineering	Е	2		2.0				100	
HM2450	Introduction to Psychology	Е	2		2.0				100	
HM2510	Sri Lankan Built Heritage	Е	2		2.0				100	
HM2610	Nutrition and Health	Е	2		2.0				100	
HM2620	Food and Nutrition	Е	2		2.0				100	
HM2630	Photography	Е	2		2.0				100	
HM2640	Photography as an Art	Е		4	2.0				100	
HM2710	Astronomy and Cosmology	Е	2		2.0				100	
HM2430	Human Rights	Е	2		2.0				100	
HM2410	Responsible Citizenship	Е	2		2.0				100	
HM2330	Yoga Practice	Е		4	2.0				100	
HM2010	Sinhala as a Second Language	Е	2		2.0				100	
HM2020	Tamil as a Second Language	E	2		2.0				100	
HM2110	Effective Communication	Е	2		2.0				100	
HM2210	Creative Writing	Е	2		2.0				100	
	Total				30.0	0.0	0.0	0.0		

Semester 4	Semester 4									
			Hours/ Week		Credits		Norm		Evaluatio n	
Code	Module Name		Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
HM2310	Meditation	Е	2		2.0				100	
HM2610	Nutrition and Health	Е	2		2.0				100	
HM2460	Public Administration	Е	2		2.0				100	
HM2670	Video Production	Е		4	2.0				100	
HM2520	Intangible Heritage of Sri Lanka	Е	2		2.0				100	
HM2350	Western Classical Music	Е		4	2.0				100	
HM2470	Life skills for Engineers	Е		4	2.0				100	
HM2660	Digital Photography	Е		1	2.0				100	
HM2010	Sinhala as a Second Language	Е	2		2.0				100	
HM2030	Japanese as a Foreign Language	E	2		2.0				100	
HM2040	Chinese as a Foreign Language	Е	2		2.0				100	
	Total				30.0	0.0	0.0	0.0		

Modules

Semester I

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA			
1	CE1023	Fluid Mechanics	2.0	С	GPA			
Hours	s/Week	Propaguisitas / Coraquisitas	Evaluation %					
Lecture	Lab/Tutes	Frerequisites / Corequisites	CA	,	WE			
2	2/4	None	20		80			
Learning O	utcomes							
After compl	eting this modu	le, students should be able to,						
 definence dete dete equitive appine velo 	 define the properties of fluids and describe the significance of such properties in applications in engineering practice, determine hydrostatic forces on submerged surfaces/ bodies and assess the conditions for equilibrium and stability such surfaces/bodies in applications in engineering practice, and apply the concepts of conservation of mass, energy and momentum of fluids and determine the velocities, pressures, flow rates, forces, etc., in applications in engineering practice. 							
Syllabus Oi	ıtline							
1. In 2. Cl 3. Fl 4. Fl 5. In	troduction: app naracteristics/ P uid Statics uids in Motion troduction to H	lications in fluid mechanics roperties of Fluids ydraulic machinery						

STUDENT HANDBOOK 2020 INTAKE

Semester	Code	Module Title	Credits C/E/O GPA					
1	CS1033	Programming Fundamentals 3.0 C GPA						
Hour	s/Week	Propagaisitas / Coroquisitas	Ev	aluation 9	%			
Lecture	Lab/Tutes	rierequisites / Corequisites	CA	,	WE			
2	2	None	20		80			
Learning O	utcomes							
After compl	eting this modu	le, students should be able to						
• Dev	vice algorithms	to solve simple computational problems						
• Dev	elop programs	from algorithms using a high-level programm	ing language	e (e.g., Pyt	hon)			
Dev	elop programs	for simple control applications using embedde	ed hardware	platforms				
Syllabus Or	ıtline							
• Intr	oduction to Cor	nputing						
 Pytl 	non: Introductio	on, Operators, Expressions						
• Pytl	non: Selection (Control Structures						
Pytl	non: Loop Cont	rol Structures SP						
 Pytl 	non: Lists							
 Pytl 	non: Functions							
• Dat	a Representatio	n						
Problem Solving I								
Problem Solving II								
Pro	Problem Solving III							
Con	Computer System & Hardware I							
Cor	nputer System a	& Hardware II						

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1	EE1040	Electrical Fundamentals	2.0	2.0 C GPA			
Hou	rs/Week	D ronoguigitog / Concernicitog	Ev	aluation 9	%o		
Lecture	Lab/Tutes	Frerequisites / Corequisites	CA	CA WE			
2	2/4	None	20		80		
Learning (Dutcomes						
After comp	leting this modu	le, the student should be able to;					
• Ē	Describe the prac	tical aspects of basic circuit elements.					
• A	analyze ac circui	ts using series/parallel simplifications, voltage	e/current div	ision rules			
• S	olve three-phase	balanced circuits in terms of line quantities a	nd power.				
• E	raw up a compl	ete wiring circuit f a hushed and appreciate the	e importance	e f differen	t		
• p	rotecting and sa	fety devices					
Syllabus O	utline						
1. C	Verview of Elec	trical Engineering					
2. B	asic Circuit Eler	nents					
Р	hysical characte	ristics of linear circuit elements (resistors, inc	luctors and	capacitors)	, voltage-		
С	urrent relationsh	ips, voltage sources, solutions of resistive circ	uits using K	irchoff's la	aws.		
3. A	C Theory	· · · · · · · · · · · · · · · · · · ·					
5	inusoidai wavel	tonge complex neuron and energy neuron factor	tation, com	plex repre	sentation,		
11	oltage/current di	vision rules AC circuit calculations	r, series/para	aner simpli	incations,		
4 T	hree Phase Bala	nced Circuits					
τ. Γ	efinition of bala	nced three phase systems circuit diagrams de	elta-star con	nection and	d		
tı	ansformation. p	er-phase equivalent circuit, power factor corre	ction.	neetion un	a		
5. C	'ircuit Protection	and Basic Electrical Safety					
В	asic component	s of a domestic electrical system, overcurren	nt/short circ	uit protecti	ion, earth		
le	eakage protection	n, devices, case studies					

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1	MA1014	Mathematics	3.0	С	GPA		
Hour	s/Week		Ev	Evaluation %			
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA	CA WE			
5/2	1	None	20 80				
Learning O	utcomes						
After the su	ccessful comple	tion of this course, students should be able to					
 Identi 	fy basic operati	ons and functions of complex variables, explo	re 3D geom	etry using	vectors		
and solve ba	sic eigenvalue	problems for matrices.	-				
• Use r	eal functions of	one real variable up to power series.					
Solve	Differential Eq	uations up to second order linear with non-con	nstant coeffi	cients			
Syllabus Or	utline						
Algebra							
 Comp 	olex Numbers: H	Euler's Identity, complex valued functions and	branches.				
 Vector 	ors: vector algeb	ora, vector product, scalar product, scalar triple	e product, v	ector triple	product,		
equati	ions of line and	plane, vector norms					
 Matri 	ces: transpose, a	adjoint, determinant, inverse and trace of a ma	trix, system	of equatio	ns,		
 Cram 	er's rule, Gauss	ian elimination, echelon forms, rank, eigen va	lues and eig	en vectors,			
 diago 	nalization, matr	ix norms.					
Real Analys	sis						
Sets asupren	nd Inequalities: mum and infim	Introduction to quantifiers and sets, real num um, completeness axioms.	ber system,	inequalitie	s,		
• Funct contir	ions, Limits and uity, differentia	d Differentiability: relations, functions and the ability	eir inverses,	limit of a	function,		
Basic value	Theorems: Int theorem, L' Ho	ermediate value theorem, extremum value the pital's rule.	eorem, Rol	le's theore	em, mean		
• Seque	ences and Series	: Convergence of sequences and series, mono	tone conver	gence theor	rem.		
Integration	and ODE						
Riem	ann integration.	integral as an area. First and second fundament	ntal theorem	s of calcul	115.		
• Leibn	iz rule Integral	bility of a continuous function Integration by	narts mea	n value the	eorem for		
integr	als. Improper in	tegrals: tests of convergence, gamma function	Parto, mou 1.	unde the			
Ordin	ary differential	equations: classification of ODEs (Linear and	non-linear)	, First orde	r		

• ordinary differential equations: variable separable, homogeneous, linear, Bernoulli Second order linear differential equations: equations with constant coefficients, Wronskian method

STUDENT HANDBOOK 2020 INTAKE

Semester	Code	Module Title	Credits C/E/O GPA				
1	ME1033	Mechanics	2.0 C GPA				
Hour	s/Week	Provo aminitar / Como aminitar	Evaluation %				
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE		
2	2/4	None	20		80		
Learning O	utcomes						
Upon compl	leting this cours	se, the students should be able to:					
 Calcu 	late sectional p	roperties of plane areas,					
 Calcu 	late internal for	ces in beams,					
 Identi 	fy statically de	terminate / indeterminate trusses, their stabili	ty and deter	mine force	es in truss		
memb	bers.						
• After	completing this	s part (Dynamics) of the module, the students s	should be ab	ole to:			
Analy	se the geometry	y of motion of particles, rigid bodies and 2D li	inkages,				
• Deter	mine forces and	l energy associated in particles and rigid bodie	es in motion,	,			
Analy	se natural vibra	ations of damped, single degree of freedom sys	stems.				
Syllabus Ot	utline						
Statics							
Prope	rties of plane a						
Intern	al forces (BML) & SFD)					
Princi Datar	pie of superpos	allion					
• Deten	initiation of for	ces in assemblies of rigid bodies					
Eundo	montals of Du	nemios					
Funda	unientais of Dyl	annes	motion as	n anal maati	on in 2D)		
• Killeli and ri	gid bodies (rela	tive motion between two points in a rigid hod	v velocities	in 2D link	011 111 2D)		
• mechanisms instantaneous centre of rotation method introduction to acceleration)							
 mecha 	anisins. Instanta	ineous centre of rotation method, infroduction					
 mecha Kinet 	ics of particles	and rigid bodies (force, torque, work, energy	and power	. linear ma	omentum		
 mecha Kinet angula 	ics of particles ar momentum)	and rigid bodies (force, torque, work, energy	and power	, linear mo	omentum,		
 mecha Kineta angula Mecha 	ics of particles ar momentum) anical Vibration	and rigid bodies (force, torque, work, energy	and power	, linear mo	omentum,		

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1	MT1023	Properties of Materials	s of Materials 2.0 C GPA				
Hours	Hours/Week Evaluation %						
Lecture	Lab/Tutes	Frerequisites / Corequisites	CA		WE		
2	2/4	None	20		80		
Learning Out	comes						
At the complet	tion of this modul	e, students should be able to;					
 Recogni 	ze the structure of	f metals, polymers and ceramics					
 Identify 	the relationships	between the structure of materials, th	eir properties	and applica	tions		
 Assess the 	he properties of e	ngineering materials					
Syllabus Outli	ine						
 Introduction 	tion to engineerin	g materials					
Structure	e of atoms, atomic	c theories, atomic bonding in materia	ls				
 Crystal s 	structures and def	ects					
Introduc	tion to nanomater	ials					
 Mechani 	ical properties of	materials					
 Electrica 	al properties of ma	aterials					
 Degrada 	tion of Materials						
 Function 	Functional Materials and their applications						
Basic ma	aterials selection						

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1,2	EL1030	Language Skills Enhancement	2.0	2.0 C GPA			
Hours	s/Week	Evaluation %					
Lecture	Lab/Tutes	Frerequisites / Corequisites	CA		WE		
	2	None	100		0		
Learning Out	comes						
At the complet	tion of this modul	e students should be able to:					
 Demons 	trate having achie	eved the competencies for listening, s	peaking, read	ing and writ	ing		
(UTEL I	bands 6, 7 and 8 r	espectively)					
Syllabus Outl	ine						
 Listenin 	g comprehension:	spoken texts and dialogues					
 Speakin 	g on given topics.						
 Asking of 	questions and resp	bonding to questions.					
 Reading 	comprehension						
Summar	rising and synthes	ising					
 Describit 	ing objects, mecha	anisms and processes					
 Discussi 	Discussion/ writing activities						
 Describit 	Describing data and graphical information						
 Function 	nal grammar						

Semester II

Semester	Code		Module Title	C/E/O	GPA / NGPA			
2	CH1051	Enginee	Engineering Thermodynamics					
Hour	s/Week	Creadite	Evaluation %					
Lecture	Lab/Tutes	Creans	Credits Prerequisites / Corequisites		WE			
2	2	3.0	None	40	60			
Loorning ()	Learning Outcomes							

Learning Outcomes

On successful completion of this module, students are able to:

- LO1: Understand the basic concepts in thermodynamics.
- LO2: Recognize the applicability of Laws of thermodynamics in process industry.
- LO3: Analyse flow processes and nonflow processes.
- LO4: *Explain* the P-v-T behaviour of real and ideal gases.
- LO5: Describe different forms of energy and the limitations of the world's energy resources.
- LO6: Apply Laws of thermodynamics for cyclic processes and liquefaction processes.

Syllabus Outline

Basic concepts in Thermodynamics

Scope and limitations of thermodynamics, Systems and processes, State and properties, Phase rule, Zeroth Law, Heat reservoirs and Heat engines, Different flow patterns

First Law of Thermodynamics

Moving boundary, General energy balance relation, Specific heats, Relations for the internal energy and enthalpy of ideal gases; General conservation of mass relation for control volumes, Flow work and the energy of fluid streams

P-v-T behaviour

Various property diagrams and P-v-T surfaces of pure substances, Property tables, Ideal-gas equation of state, Compressibility factor, Deviation of real gases from ideal-gas behaviour: van der Waals, Beattie-Bridgeman, and Benedict-Webb-Rubin equations

Second laws of Thermodynamics

Various statements of the second law, Perpetual motion machines and the thermodynamic temperature scale, Clausius inequality and the basis for the definition of entropy, Increase of entropy principle, Isentropic processes, Steady flow work

Applications of the Laws of Thermodynamics

Energy: Concept of energy, Reversible work, Energy destruction, Second-law efficiency, Exergy balance

Flow processes: Continuity and energy equations, Flow in pipes, nozzles, ejectors, and compressors Refrigeration: Refrigerators and heat pumps, Reversed Carnot cycle, Vapor-compression refrigeration cycle, Introduction to gas refrigeration cycles

Liquefaction processes: Vaporization of liquid, Free expansion, Isentropic expansion

Steam power plants: Carnot vapor cycle, Rankine cycle and applications

Internal combustion engine: Carnot cycle, Air standard assumptions, Reciprocating engines, Auto cycle, Diesel cycle

Gas-turbine power plants: Brayton Cycle

Semester	Code		Module Title	C/E/O	GPA / NGPA		
2	CH1044	Fluid Dynamics C		С	GPA		
Hours/Week		Cuadita			ation %		
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE		
3	2	4.0	4.0 CE1023		60		
Learning	Learning Outcomes						

After completing this module, the students should be able to,

- LO1: Understand the general concepts of momentum transport.
- LO2: *Recognize* different flow patterns and analyze their applications.
- LO3: Use integral analysis and differential analysis techniques to analyze fluid flow.
- LO4: Apply dimensional analysis and conservation laws in solving problems in fluid flow.
- LO5: Design basic fluid flow systems in process industry.

Syllabus Outline

General concepts of momentum transport

Viscosity, Mechanisms of momentum transport: molecular momentum transport and convective momentum transport, Analogy of mass, momentum and energy transport, Conservation Laws: continuity equation, momentum equation and energy Equation.

Different flow patterns

Laminar and Turbulent behaviour of fluid flow, Flow of a falling film, Flow through an annulus, Flow between parallel plates, Rotational viscometers, Power transmission between parallel discs, Creeping flow, Fully developed pipe flow, Pressure drop and head loss, Effect of gravity on velocity and flow rate, Newtonian and Non-Newtonian flow in pipes, Roughness of the walls of the pipe, Boundary layer and the viscous sub layer, Eddy viscosity, Moody diagram, Reynolds stress, Prandlt's mixing length theory, Velocity distribution in turbulent flow.

Differential analysis of fluid flow

Differential equations of fluid motion: continuity equation, Euler's Equation and Navier Stokes Equation, Stream function, Boundary layer approximation, Boundary layer thickness, Momentum integral equation, Laminar and turbulent boundary layers, Boundary layers with pressure gradients, Friction and pressure drag.

Dimensional analysis and application of conservation laws

Dimensions, units, Dimensional homogeneity, Dimensional analysis and similarity, Buckingham pi theorem, Pump scaling laws, Pump types, Fundamental parameters in analysing pumps, Pump performance curves and Matching a pump to a piping system, Pump cavitation and Net positive suction head, Minor losses, Series and parallel pipes, Piping systems with pumps and turbines, Flow rate and velocity measurements, Mixing and agitation.

Compressible fluid flow

Compressibility, Mach number, Stagnation properties, One dimensional isentropic flow, Isentropic flow through nozzles, Normal shock waves, Duct flow with heat transfer and negligible friction, Adiabatic duct flow with friction.

STUDENT HANDBOOK 2020 INTAKE

Semester	Code		Module Title	C/E/O	GPA / NGPA
2	CH1061	Chemical and H	Bioprocess Engineering Principles	С	GPA
Hour	s/Week	Cradita	Propognisitos / Conoquisitos	Evalu	ation %
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE
3	2	4.0	None	40	60
Learning	Outcomes				
After comp	oleting this mo	dule, the students	should be able to,		
•	LO1: Unders	stand the evolution	n of chemical and bioengineering		
•	LO2: Select	unit operations ne	cessary for a given process		
•	LO3: Identif	v resources require	ed for a process based on internal an	d external co	onstraints
•	LO4: Perform	<i>n</i> material balance	e and energy balance calculations for	r a given sys	tem
•	LO5: Estima	te resource requir	ements and process parameters usin	g material an	d energy
	balance				
•	LO6: Explain	n the importance of	of the steps associated with the proce	ess scaling up	o applying to
	the chemical	and process indus	stry		
•	LO7: Develo	p a process flow s	sheet		
Syllabus C	Dutline				
Introduct	ion to Chemio	cal Engineering			
Introduct	ion to Biopro	cess engineering			
Natural re	esources				
Sources of	materials; ma	terials from geosp	bhere, hydrosphere atmosphere and	biosphere; So	ources of
energy- re	newable and n	on-renewable			
Process D	evelopment				
Concept of	f process deve	lopment, design c	onstraints, steps involved in process	design.	
Unit Oper	rations				
Definition	s and applicati	ons of different u	nit operations and processes.		
Flow shee	ting				
types of pr	ocess plant de	sign diagrams, ins	strument and equipment identification	on, computer	aided flow
sheeting					
Material l	Balance				
Balances f	or non-reactin	g systems and rea	cting systems with single and multip	ple reactions.	
Energy Ba	alance				
Balances f	or non-reactin	g systems and rea	cting systems with single and multip	ple reactions.	
Transport	t phenomena	_			
Transport	of mass, heat,	and momentum			
Utilities a	nd instrumen	tation			
Steam pro	duction and di	stribution, types o	f boilers, cooling water and tower, a	air compresso	ors, positive
displaceme	ent and dynam	ic pumps, types o	f valves, pipes, and piping		

2 CH1071 Chemistry and Green Chemistry for Process Engineers C GPA Lecture LabTutes Credits Prerequisites / Corequisites Evaluation % 2 2 3.0 None 40 60 Lecture LabTutes Credits Prerequisites / Corequisites WE After completing his module, the students should be able to: Ch10: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical engineering processes 6 LO2: Discass the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications LO3: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species 1 LO3: Elect the most suitable polymerization mechanism and poly natural product chemistry in related industrial applications 1 LO3: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Interaction process Syllabus Outline Properties of faase, Gas laws Properties of solids, Liquids and gases, Properties of gase, Gas laws Propertiso Solutions Su	Semester	Code		Module Title	C/E/O	GPA / NGPA			
Identify Credits Prerequisites / Corequisites Evaluation % CA 2 3.0 None 40 60 Learning Outcomes After completing this module, the students should be able to; After completing this module, the students should be able to; OL: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications LO3: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species LO5: Select the most suitable polymerization mechanisms and apply natural product chemistry in related industrial applications LO6: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO6: Apply analytical chemistry knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Internokola	2	CH1071	Chemistry and Gr	een Chemistry for Process Engineers	С	GPA			
Letture Lab/Tutes Creating Prerequisites/Corequisites CA WE 2 2 3.0 None 40 60 Learning Outcomes - 1.01: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical engineering processes . 1.02: Discurs the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications . 1.03: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species . 1.04: Distinguish different organic reaction mechanisms and apply natural product chemistry in related industrial applications . 1.05: Select the most suitable polymerization mechanism and process and use them in designing the polymer manufacturing process . 1.06: Apply anniciples of chemical changes . 1.07: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Internolocular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Prose Equilibria Prose pretise of Solutions Solubility and dissociation process, Saurated solubility, Factors affecting solubility, Solubility moduct constant, Colligative properties, Matture and chemical equilibrium for two component systems. Three component systems Prodect of wa	Hours	s/Week	Caradita		Eval	uation %			
2 3.0 None 40 60 Learning Outcomes After completing this module, the students should be able to; • LO1: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical engineering processes. • LO2: Discuss the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications. • LO3: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species. • LO5: Select the most suitable polymerization mechanisms and apply natural product chemistry in related industrial applications. • LO6: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes • LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Sylabus Outline Properties of Matter Internolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of Solutons Solubility and dissociation process. Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties. Matter and Colloids Chemical Equilibria Departison of phase, Component and degrees of	Lecture	Lab/Tutes	Crealts	Prerequisites / Corequisites	CA	WE			
Learning Outcomes After completing this module, the students should be able to; LO1: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical engineering processes LO2: Discuss the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications LO3: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species LO4: Distinguish different organic reaction mechanisms and apply natural product chemistry in related industrial applications LO5: Select the most suitable polymerization mechanism and process and use them in designing the polymer manufacturing processes LO6: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO6: Apply analytical chemistry knowledge in green chemistry and practice it in good manufacturing processes Sylabus Outline Properties of Natter Interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of solids, Liquid vapor equilibria for two component systems, Three component systems Properties of Natter Properties of Solutions Solubility and dissociation process. Surmated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties. Mixtures and Colloids Chemical Equilibria Strengths of acids and bases (elementary idea). Ionization of weak acids and weak bases in aqueous solution, lonization	2	2	3.0	None	40	60			
 After completing this module, the students should be able to: LO1: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical engineering processes LO2: Discuss the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications LO3: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species LO4: Distinguish different organic reaction mechanisms and apply natural product chemistry in related industrial applications LO5: Select the most suitable polymerization mechanism and process and use them in designing the polymer manufacturing process LO5: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Internolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of solations of plase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component systems. Properties of Solutions Solubility and disociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chemical Equilibria Acid-Base Equilibria Strangth of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Ionic product of water Electrochemistry Quantitative analysis, Anal	Learning (Outcomes							
 LOI: Acquire the knowledge on intermolecular interactions and properties of matter and solutions, and use it to understand various chemical engineering processes LO2: Discuss the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications LO3: Apply principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species LO4: Distinguish different organic reaction mechanisms and apply natural product chemistry in related industrial applications LO5: Select the most suitable polymerization mechanism and process and use them in designing the polymer manufacturing processes LO6: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Properties of Matter Properties of Matter Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria Chemical Equilibria Chemical Equilibria Chemical Equilibria Chemical Equilibria Chemical Equilibria Equilibria Equilibria Gradistionship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibrium (Strengther and their quantitative dependence on temperature, pressure and concentration, Relations of various equilibrium Acid-Base Equilibri	After comp	leting this mod	lule, the students she	ould be able to;					
 LOG: Distinguish different organic reaction mechanisms and apply natural product chemistry in related industrial applications LOG: Distinguish different organic reaction mechanisms and process and use them in designing the polymer manufacturing process LOG: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LOG: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Internolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibrian for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process. Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chemical Equilibria Equilibrian constants and their quantitative dependence on temperature, pressure and concentration, Relations of various equilibrium constants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting solubility, Solubility and Mase equilibrium Stengths of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Ionic poduct of water Electrochemistry Quantitative angetes of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical electrode freduction polymerization, Cationic polymerization, Anionic polymerization, Condensat	•	 it to understand various chemical engineering processes LO2: <i>Discuss</i> the phase equilibria, chemical equilibria and acid-base equilibria and apply the knowledge in industrial applications LO3: <i>Apply</i> principles of electrochemistry to evaluate the interaction between electrical energy and charged chemical species 							
 I. Dots: Select the most suitable polymerization mechanisms and uppy intuiting product chemistry in related polymer manufacturing process I. Dof: <i>Apply</i> analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes I. Dof: <i>Acquire</i> the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Internolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Properties of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligitive properties, Mixtures and Colloids Chemical Equilibria Eduinoship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibrium constants, eduids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Ionic product of water Electrochemistry Quantitative apects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical electrode (reduction) potential Applied Organic Chemistry and Reaction Mechanisms: Addition, Elimination, Substitution and Rearrangement reactions, The use of organic chemistry and reaction mechanisms in industrial applications Polymerization, Condination polymerization, Anionic polymerization and Emulsion polymerization, Standard electrode (reduction) potential Applied Organic Chemistry and Reacti	•	I O4: Distingu	ish different organic	reaction mechanisms and apply natural product	chemistry	in related			
 LO5: Select the most suitable polymerization mechanism and process and use them in designing the polymer manufacturing process LO6: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Intranolecular and intranolocular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chenical Equilibria Equilibria Equilibria Strengths of acids and bases (elementary idea), Ionization of weak caids and weak bases in aqueous solution, Ionization constants, Ionic product of water Electrochemistry Quantitative sapects of Fraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical clearls, reversible call irreversible cells with examples, Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential Applied Organic Chemistry and Reaction Mechanisms Introduction to types of organic reactions and their mechanism: Addition, Elimination, Substitution and Rearrangement reactions, The use of organic chemistry and reaction spearenations: Addition, Elimination, Substitution and Rearrangement	•	industrial appli	ications	reaction meenanisms and appry natural product	enemistry	Intelated			
 polymer manufacturing process LOG: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Intermolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chemical Equilibria Equilibria unstants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting solubility, Solubility and constants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibrium constants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibrium Constants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibria Uptantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical cells, reversible and irreversible cells with examples, Electrorhemistry Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation, Elimination, Substitution and Rearrangement reactions, The use of organic chemistry and Reaction Mechanism: Addition, Elimination, Substitution and Rearrangemen	•	LO5: Select the	e most suitable poly	merization mechanism and process and use them	in designi	ing the			
 LO6: Apply analytical chemistry knowledge in quantitative and qualitative analysis of chemical compounds and evaluate chemical changes LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Properties of Matter Internolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chenical Equilibria Equilibria Equilibria Equilibria Equilibria Strengths of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Ionic product of water Electrochemistry Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical electrode (reduction potentia) Applied Organic Chemistry and Reaction Mechanisms Introduction to types of organic reactions and their mechanism: Addition, Elimination, Substitution and Rearrangement reactions, The use of organic chemistry and reaction mechanisms in industrial applications Polymerization, Condinaic polymerization, Anionic polymerization, Condensation polymerization polymerization polymerization polymerization and Emulsion polymerization Polymerization Processes Bulk polymerization polymer	j	polymer manu	facturing process	L	U	8			
LO7: Acquire the basic knowledge in green chemistry and practice it in good manufacturing processes Syllabus Outline Proprties of Matter Intermolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chemical Equilibria Equilibria Equilibria constants and their quantitative dependence on temperature, pressure and concentration, Relations of various equilibrium Acid-Base Equilibria Strengths of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ioniz ation constants, Ionic product of water Electrochemistry Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical cells, reversible and irreversible cells with examples, Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential Applied Organic Chemistry and Reaction Mechanisms Introduction to types of organic reactions and their mechanism: Addition, Elimination, Substitution and Rearrangement reactions, The use of organic, Cationic polymerization, Anionic polymerization and Emulsion polymerization Analytical Chemistry Quantitative and qualitative analysis, Analytical separations, and Chromatographic techniques: Principles and efficiency of the technique, C, HPLC, Introduction to polymerization, Suspension polymerization and Emulsion polymerization So	•	LO6: <i>Apply</i> an	alytical chemistry k d evaluate chemical	nowledge in quantitative and qualitative analysis	of chemic	al			
Syllabus Outline Syllabus Outline Properties of Matter Intermolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibriun for two component systems. Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chenical Equilibria Equilibria Equilibria Strengths of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibrium Acid-Base Equilibria Strengths of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Ionic product of water Electrochemistry Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical cells, reversible and irreversible cells with examples, Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential Applied Organic Chemistry and Reaction Mechanism:	•	LO7: Acquire 1	the basic knowledge	in green chemistry and practice it in good manu	facturing r	tocesses			
Properties of Matter Intermolecular and intramolecular interactions, Effect of molecular interactions on properties of solids, Liquids and gases, Properties of gases, Gas laws Phase Equilibria Definitions of phase, Component and degrees of freedom, Phase rule and its derivations, Definition of phase diagram, Phase equilibria for one component system, Liquid vapor equilibrium for two component systems, Three component systems Properties of Solutions Solubility and dissociation process, Saturated solutions and solubility, Factors affecting solubility, Solubility product constant, Colligative properties, Mixtures and Colloids Chemical Equilibria Equilibria motostants and their quantitative dependence on temperature, pressure and concentration, Relations of various equilibrium constants, Relationship between chemical kinetics and chemical equilibrium, Factors affecting chemical equilibrium Acid-Base Equilibria Strengths of acids and bases (elementary idea), Ionization of weak acids and weak bases in aqueous solution, Ionization constants, Ionic product of water Electrochemistry Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, Chemical cells, reversible and irreversible cells with examples, Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potentia Applied Organic Chemistry and Reaction Mechanisms Introduction to types of organic reactions and their mechanism: Addition, Elimination, Substitution and Rearrangement reactions, The use of organic chemistry and reaction mechanisms in industrial applications Polymerization, Catonic polymerization, Anionic polymerization and Emulsion polymerization Analytical Chemistry Quantitative andysis, Analytical separations, and Chromatographic techniques: Principles and efficiency of the technique, GC, HPLC, Introduction to spectrometry Analytical Chemistry Quantitative and products based on the chemical structure, manufacturing process and their applications C	Svllabus (Outline	ine ousie into theuge	in green enemiest y and practice it in good many	in the second se	10000500			
Molecular mechanics and force fields, Molecular docking, and simulations Introduction to Green Chemistry Introduction to green chemistry. Driving factors of green chemistry, 25 Years of progress. The future of green chemistry Basic	of gases, Gas Phase Equili Definitions o for one comp Properties o Solubility and Colligative p Chemical Ed Equilibrium of constants, Re Acid-Base E Strengths of Ionic product Electrochem Quantitative reversible and (reduction) p Applied Org Introduction use of organi Polymerizati Polymerizati Polymerizati Bulk polyme Analytical C Quantitative technique, G spectroscopy Natural Pro Computatio	a laws bria f phase, Compor oonent system, Li f Solutions d dissociation pro roperties, Mixtur juilibria constants and the lationship betwe quilibria acids and bases (t of water istry aspects of Farada d irreversible cel otential ganic Chemistry to types of organ c chemistry and ion Processes rization, Solution themistry: and qualitative a c, HPLC, Introdi , NMR spectrosc ducts and Indus o fn atural produ	aent and degrees of free quid vapor equilibrium occess, Saturated solutio es and Colloids ir quantitative depende en chemical kinetics at elementary idea), Ioniz ay's laws of electrolysi ls with examples, Elect and Reaction Mecha ic reactions and their n reaction mechanisms in Cationic polymerization polymerization n polymerization, Susp nalysis, Analytical sep- uction to spectrometric opy, Mass spectrometric rial Applications ucts based on the chem	edom, Phase rule and its derivations, Definition of phase n for two component systems, Three component systems ons and solubility, Factors affecting solubility, Solubility ence on temperature, pressure and concentration, Relation and chemical equilibrium, Factors affecting chemical equivation at chemical equilibrium, Factors affecting chemical equivation s, rules of oxidation/reduction of ions based on half-cel tromotive force of a cell and its measurement, Nernst ec nisms nechanism: Addition, Elimination, Substitution and Rea n industrial applications n, Anionic polymerization, Condensation polymerization arations, and Chromatographic techniques: Principles at methods: IR spectroscopy, UV Visible spectroscopy, A y ical structure, manufacturing process and their application	e diagram, P s y product co ons of variot iilibrium a, Ioniz ation I potentials, juation; Star urrangement n, Ring-ope ad efficiency atomic absor-	hase equilibria instant, is equilibrium constants, Chemical cells, idard electrode reactions, The ning y of the rption			
principles of group about iters.	Molecular m Introduction	echanics and ford to Green Chen to green chemist	ce fields, Molecular do nistry ry, Driving factors of g	cking, and simulations green chemistry, 25 Years of progress, The future of gree	en chemistry	, Basic			

Semester III

Semester	Code		Module Title	C/E/O	GPA /		
3	CH2631	Cher	nical Thermodynamics	C	GPA		
Hour	c/Wook	Clief	lifear mermodynamics	Evolu	otion %		
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites		WE		
2	2	3.0	CH1051	40	60		
Loorning	- Dutcomos			10	00		
After completing this module, students should be able to							
- Anter	• LO1: Understand the chemical thermodynamic processes and find the feasibility of such						
-	 LOT. Ondersiding the chemical methodynamic processes and find the feasibility of such processes. 						
•	LO2: Apply t	he laws of thermo	dynamics to solve the problems relation	ated to chemi	cal changes.		
•	LO3: Determ	ine the heat exchange	ange in chemical reactions.		U		
•	LO4: Analyz	e the thermodyna	nic properties of pure fluids and sol	utions.			
•	LO5: Derive	the relationships	of thermodynamic parameters for gi	iven application	ons.		
•	LO6: Apply t	he thermodynami	c concepts to understand and evaluation	ate the phase of	equilibria and		
	chemical read	ction equilibria.					
Syllabus C	Outline						
Basic conc	epts in chemi	cal thermodynan is involve in chem	nics ical changes: phase transitions, chen	nical reaction	s dissolution		
Basic defin	itions of them	odynamic proper	ties based on chemical processes	inear reaction.	s, dissolution,		
Determinat	ion of enthalm	v changes in che	mical reactions: exothermic reaction	ons, endotherr	nic reactions.		
reversible	eactions, Heat	changes in dissol	ution, Phase transitions, Effect of ter	nperature on 1	heat capacity.		
Interpretati	on of thermod	ynamic laws for c	hemical processes: irreversible proc	esses, reversil	ble processes,		
thermal equ	uilibrium, mec	hanical equilibriu	m, and material equilibrium.		•		
Thermody	namic proper	ties of pure fluid	s				
Classificati	on of thermod	ynamic properties	3.				
Gibbs free	energy and He	lmholtz free ener	gy for chemical processes.				
Clanauran	ips among the	ermodynamic pro	operties: Gibbs equations and Ma	xwell relation	ns, Clausius-		
Eugacity e	Equation.	rature and pressur	e on fugacity, fugacity of solids and	lliquide			
Activity ef	ffect of pressu	e and temperature	on Activity	i iiquius.			
Thermody	namic proper	ties of solutions	on Heavily.				
Partial mo	lar properties,	Chemical potent	ial, Fugacity in solutions, Henry'	Law and dily	ute solutions,		
Activity in	solutions and	Activity coefficier	ts, Gibbs-Duhem Equations, Proper	ty changes of	mixing, Heat		
effects of n	nixing.						
Phase equi	ilibria						
Phase equi	libria in single	-component and r	nulti-component systems, Phase rule	e for non-read	cting systems,		
Vapour lic	quid equilibria	a, Phase diagram	n for binary solutions, Non-ideal	solutions, V	Vapour-liquid		
equilibria,	Liquid-liquid e	equilibrium diagra	ims.				
Equilibrium	n constant and	standard free ana	ray change. Effect of temperature a	nd pressure of	n Equilibrium		
constant O	ther factors aff	fecting equilibriur	n conversions. Liquid-phase reaction	ns. Heteroger	eous reaction		
equilibria.				, 1100010501	- sus reaction		
•							

Semester	Code	Module Title		C/E/O	GPA / NGPA
3	CH2015	Heat and Mass Transfer		С	GPA
Hours/Week		Creadita	Den initia (Comparisita	Evaluation %	
Lecture	Lab/Tutes	Creatts	r rerequisites / Corequisites	CA	WE
3	2	4.0	CH1051, CH1044	40	60

Learning Outcomes

After completing this module, students should be able to,

- LO1: Recognize the heat and mass transfer related equipment in the process industry.
- LO2: Understand basic principles of heat and mass transfer.
- LO3: Analyze heat and mass transfer problems using conservation equations.
- LO4: Calculate heat and mass transfer coefficients.
 - LO5: Understand the concepts related to mass exchanger design.
- LO6: *Design* a heat exchanger for a given duty.

Syllabus Outline

Introduction

Momentum, heat, and mass transfer analogies, three modes of heat transfer mechanisms.

Heat Conduction

Derivation of general three-dimensional conduction equation, steady state one dimensional conduction equations for different geometries, thermal resistance concept & its importance, critical thickness of insulation, heat transfer in extended surfaces, one-dimension unsteady state heat conduction, Lumped system analysis, use of transient temperature charts (Heisler's charts).

Heat Convection

Concepts boundary layers, concepts of heat transfer coefficients, application of dimensional analysis for free convection and force convection, physical significance of dimensionless numbers related to heat convection, use of correlations of free convection and force convection.

Heat Transfer with phase changes

Types of condensation, Nusselt's theory for laminar condensation on a vertical flat surface, use of correlations for condensation; regimes of pool boiling, pool boiling correlations.

Thermal Radiation

Definitions of various terms and laws used in radiation heat transfer, radiation heat exchange between two parallel infinite black surfaces and two parallel infinite Gray surfaces, effect of radiation shield, radiation heat exchange between two finite surfaces, electrical analogy for Gray body heat exchange, gaseous radiation.

Design of Heat Exchangers

Classification of heat exchangers, overall heat transfer coefficient, fouling, and fouling factor, LMTD, Effectiveness-NTU methods of analysis of heat exchangers.

Molecular mass transfer

Introduction to mass transfer, definitions of various terms used in mass transfer, Fick's Law, differential equation of mass transfer, state and unsteady state molecular diffusion, diffusion through a stagnant gas film, equimolecular counter diffusion, diffusion in liquids, diffusion in solids.

Convective Mass Transfer

Significant parameters in convective mass transfer, convective mass transfer coefficients, application of dimensional analysis to mass transfer, physical significance of dimensionless numbers related to mass transfer, convective mass transfer correlations, Mass transfer between phases, overall mass transfer coefficient.

Design concepts of Mass Exchangers

Principles involving design of mass exchangers, height of packing, number of transfer units, height of transfer units, mass exchanger design procedure, Applications of mass transfer principles in process industry.

Semester	Code		Module Title	C/E/O	GPA / NGPA			
3	CH2160	Bioproces	s Engineering and Practices	C GPA				
Hour	s/Week	<i>a</i> . n		Evalu	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	None	40	60			
Learning	Learning Outcomes							
After completing this module, the student should be able to,								
• LO1: <i>Discuss</i> the integration of chemical engineering and biotechnology for the synthesis of								
b	ioproducts.	-						
• I	.O2: Recogniz	e the principles ar	nd applications of bioprocess engine	ering.				
• I	.O3: Identify a	nd analyse param	eters critical for process control in b	oiotechnologia	cal processes.			
• I	.04: Describe	upstream and dov	wnstream aspects of industrial biopre	ocesses.				
• I	.05: Evaluate	the important asp	ects in bioprocess engineering for co	ommercializa	tion of			
b	ioproducts and	d maintaining pro	duct safety.					
• I	.06: Demonstr	rate knowledge or	n the applicability of bioprocess eng	ineering for d	leveloping a			
s	ustainable bio	economy.						
Syllabus C	Outline							
Integration engineering manufactur Adopting p Process par adapting p food indust Biomolecu Describe t potential ap understand	Bridge between biotechnology and chemical engineering Integration of biotechnology and chemical engineering to manufacture products, bioresources, chemical engineering approaches for value addition to bioresources, bioprocesses to enhance the sustainability of manufacturing processes. Adopting natural phenomena as applications in bioprocess engineering Process parameters in biological processes, enzymatic reactions for sustainable production, biomimetics: adapting processes, substances, devices, or systems that resemble nature, applications from nature for the food industry Biomolecular composition in valorization of bioresources Describe biomolecular composition of various bioresources, effect of biochemical composition on potential applications and downstream processes, effect of biochemical composition on product quality, understanding computational methods in valorization.							
understanding computational methods in valorization. Bioprocesses Advantages of bioprocesses over conventional processes, introduction to unit operations and downstream processing in biochemical engineering, brief introduction to bioreactor operation and bioprocess parameters, scale up considerations in bioprocess engineering. Cell cultivation for bioprocesses Microorganisms for bioprocesses, microbial growth requirements for different applications, cell growth measurement in bioprocesses, recent advances in cell cultivation, introduction to microbial growth kinetics Engineering practices in bioprocesses Sterile practices, techniques for microbiologically safe production processes, food-water-energy nexus Biohazards and biosafety in bioprocesses Pathogens and contaminants, discussion with reference to exposures and incidents, biohazards, and pandemics Enzymes in process industry								
Advantage	s of enzyme ca	atalysed reactions	over chemical catalysts, enzyme sy	nthesis, parar	neters critical			

Semester	Code	Module Title		C/E/O	GPA / NGPA
3 CH2170		Laboratory Practices I		С	GPA
Hours/Week (spread over two semesters		Credits	Prerequisites / Corequisites	Evaluation %	
Lecture	Lab/Tutes			CA	WE
0	6	3.0	Prerequisites: CH1044, CH1071 Corequisites: CH2160, CH2015	100	0

Learning Outcomes

After completing this module, the student should be able to:

- LO1: *Understand* the basics of engineering drawing and Draw the orthographic projections of a given mechanical part or assembly.
- LO2: *Recognize* suitable software tools for chemical and process engineering applications.
- LO3: Apply software tools to analyse fluid dynamics and heat & mass transfer applications.
- LO4: *Understand* the basic concepts and techniques relevant to fundamentals in chemical and process engineering.
- LO5: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices I module covers the practical aspects of fundamentals in Chemical and Process Engineering (CH1044, CH1071, CH2160, and CH2015) and provide introduction to engineering drawing and computer aided learning.

Engineering Drawing and Computer Aided Learning

Engineering drawing (Part drawing, assembly drawing -manual); Introduction to engineering drawing and drawing software packages (AutoCAD®/ SOLIDWORKS®).

Introduction to MATLAB- matrix, loops and arrays, development of script and function files.

Computational methods for heat and mass transfer: introduction to computational fluid dynamics and development of heat and mass transfer models (1-D model solving by MATLAB®).

Dynamic behaviour of systems and stability-Linear State Space Models (development of lump model based on CH1044 and CH2015, pressure in distributed gas pipe-model development and simulation by Python)

Laboratory Experiments (8 Sessions)

(1) Centrifugal pump demonstration; Flow meter demonstration. (2) Determination of hardness of water.

(3) Synthesis of ethyl butanoate. (4) Identification of biomolecules. (5) Isolation and identification of microorganisms

(6) Determination of outside heat transfer coefficient of circular pipes. (7) Study of analogy between fluid friction and heat transfer/ Demonstration on gas and liquid diffusion. (8) Determination of viscosity index of petroleum oil and proximate analysis of coal.

Open-ended lab

Problem-Based Learning method is used in this experimental base project, where students are given the freedom to develop their own laboratory work, instead of merely following the already set guidelines.

Semester IV

Semester	Code		Module Title	C/E/O	GPA / NGPA	
4	CH2151	1	Particulate Systems	С	GPA	
	The second Weight in the second s					
Hours/Week		Credits	Prereguisites / Coreguisites	Evaluation %		
Lecture	Lab/Tutes	creats	Treequisites / Corequisites	CA	WE	
3	2	4.0	CH1044, CH1061	40	60	
Learning Outcomes						
After comp	bleting this mo 201: Derive go	dule, students sho	uld be able to: s for the motion of particle/s in a flu	id		
• I	.02: Calculate	and analyze size	, shape, size distribution of a particle	e system		
• I	.03: Analyze t	he flow characteri	stics of fluid flow in packed beds an	d fluidized be	eds and unit	
	lesign 04: Select sui	table operation ar	d equipment for the given operation	in handling r	articulate	
• 1 n	natter		id equipment for the given operation	ini nanuning p	articulate	
• I	.05: Design p	rocess equipment	for handling, generation, and separa	tion of particu	late matter	
• I	.06: Describe	fundamentals of 1	nanoparticles and investigate its appl	lications in ch	emical	
e G-llahara G	ngineering pra	actice				
Synabus C	Juline					
Particle D	ynamics					
The Motion	n of a Single P	article in an Infin	ite Extent of Fluid, Equation of moti	on, Reynold N	Number,	
Suspension	n Settling, Clas	sification of Parti	cles based on terminal settling veloc	tiies		
Particle St	atistics	ahana Nananhar	ical porticles aquivalent dispotent	nontiala siza	listributions	
Particle siz	e Analysis	shape, Non spher	ical particles, equivalent diameters,	particle size c	listributions,	
Size reduc	tion, enlarger	nent and Blendir	ng of solids			
Powder te	chnology					
Powder sta	tics and the de	sign of hoppers				
Analysis of	f fire and haza	rds of powders in	industry			
Flow of flu	iids through I	porous solid beds				
Ergun's eq	uation for, Pre	ssure Drop Acros	s the Bed. Carmen and Kozeny equa	tion, Burke, a	ind Plummer	
equation.	for gas liquid	ow Inrough Pore	bus Solid Beds, Loading and Flood	ling condition	ns. Diameter	
Fluidizatio	noi gas-iiquiu	contact equipmen	it.			
Introductio	n to Fluidizati	on. Minimum Flu	idization condition. Pressure drop	vs. Fluid velo	city relation.	
Entrainmen	nt in fluidized	beds, Heat Trans	fer in fluidized beds, fluidized bed	design, Scale	up, Spouted	
Beds, Hydr	raulic and Pne	umatic Conveying				
Solid Liqu	id Separation	L				
Classificati	ion of solid liq	uid separation equ	ipment, Sedimentation, Design of T	hickeners		
Filtration -	Modes of filters	ation, Equations f	for filtration rate, Filtration equipme	ent, Filter area	calculation.	
Centrifugat	tion- The basi	c principle of cer	numprocesses	ifuges Separ	ation of two	
immiscible	liquids in a ce	entrifuge. Solid-lic	uid separation in a centrifuge. Maxi	mum stress or	the walls of	
the centrifu	ige					

Dust and Mist Separation from Gas Streams

Gas cleaning techniques, gravity settling, momentum separators, scrubbers, filters, electrostatic precipitators, magnetic precipitators cyclones, reverse flow cyclone design

Nanotechnology

Introduction to nanotechnology, discuss nanoparticles as a major branch of nanotechnology, compare different options in synthesis, separation, characterization, and applications of nanoparticles in chemical engineering domain.

Crystallization

Principles of crystallization, Nucleation, Kinetics of crystallization, Heat and mass balance, yield, equipment, and design calculations

Semester	Code	Module Title		C/E/O	GPA / NGPA
4	CH2180	Separation Processes		С	GPA
Hours/Week					
Hours	s/Week	Credite	Duono quigitog / Concernigitog	Evalua	ation %
Hours Lecture	s/Week Lab/Tutes	Credits	Prerequisites / Corequisites	Evalua CA	ation % WE
Hours Lecture 3	s/Week Lab/Tutes 4	Credits 5.0	Prerequisites / Corequisites CH1061	Evalua CA 40	ation % WE 60

Learning Outcomes

The students will learn the design and operation of standard separation processes used in the chemical industries; Distillation, Absorption/Stripping, Extraction, Adsorption, Drying, Humidification and Evaporation.

At the end of the course the students are expected to;

- LO1: Analyse the desired separation and select the suitable Unit Operation
- LO2: Describe principles and equilibrium concepts in separation processes
- LO3: Apply material and energy balances for the separation processes
- LO4: *Describe* the effects of various operating variables on the separation output
- LO5: *Design* separation process equipment based on graphical or algebraic analysis

Syllabus Outline

Introduction

Introduction to the role of separation; Common separation processes; Mechanism of separation.

Distillation

Vapor-liquid Equilibrium for binary and multicomponent systems, Differential Distillation, Equilibrium Flash Distillation, Continuous Distillation with Reflux, McCabe-Thiele Analysis, Multistage Batch Distillation, Multiple feeds, side streams, FUG method, Lewis and Matheson method, Complex distillation methods - azeotropic, extractive and two pressure distillation, Design of tray distillation columns and column internals.

Gas Absorption & Stripping

Gas-liquid equilibrium,

Determination of Number of Ideal Stages by graphical method, Theoretical Method (Kremser Equation) Determine the height of continuous contact separator HTU NTU method, Packed column design.

Solvent Extraction

Introduction to Liquid-Liquid Extraction, Phase equilibrium for partially miscible systems, Triangular diagram, Modes of Extraction, Solvent Selection, Phase equilibrium for Immiscible systems Solid-Liquid Extraction, Super Critical Extraction, Determination of number of equilibrium stages for extraction, Extraction column design.

Adsorption and ion exchange

Types of adsorbents, Adsorption equilibrium, modes of adsorption, single stage, cross flow, countercurrent and fixed adsorption unit design calculations, Breakthrough curves, adsorption regeneration, ion exchange resins, equilibrium, kinetics, and equipment.

Evaporation

Introduction to evaporation, Boiling Point Rise (BPR)and Dühring charts, Single stage evaporator calculations, Multiple stage evaporator calculations, Discuss on various modes of evaporators and their industrial applications, Vapor re-compression in evaporators.

Humidification Operations

Basic principles on Humidification Operations, Sample problems to understand the basic terms in humidification. Introduction to psychometric chart and its applicability for humidification and dehumidification operations, Introduction to cooling tower working principle, Preliminary design calculations for cooling towers and spray chambers based on mass and energy balance.

Drving

Introduction to basic principles and Drying curves, Identify the drying process on a psychrometric chart for a given scenario, Different modes of Drying, Calculations to determine the drying parameters under different modes of drying, Dryer design.
Semester	Code		Module Title C/E/O GPA							
4	CH2210	Materials	for Engineering Applications	С	GPA					
Hours	s/Week	a 14	D	Evalua	tion %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE					
2	2	3.0	None	30	70					
Learning Outcomes										
After completing this module, students should be able to;										
•	LO1: Unders	stand the structure	e, function, properties of materials use	ed in industria	ıl					
	applications									
•	LO2: Identify	v the suitable mate	erials for a given application							
•	LO3: Recogn	<i>tize</i> the different t	ypes of material failures							
•	LO4: Choose	appropriate corre	osion preventing methods							
•	LO5: Differe	ntiate the materia	l treatment methods for engineering	performance						
•	LO6: Apply t	he correct proced	ures for material selection							
Syllabus O	Syllabus Outline									
Overview	to materials u	sed in Chemical	Engineering Applications							
Classificati	on, types of m	aterials and their	properties.							
Metals Identificati	on of motols (farmana nan farma	us allows) to suit a siver emplication	based on the						
and machir	nability.	lerrous, non-terro	us, alloys) to suit a given application	based on the	ir properties					
Types of fa	ilures, failure	mechanisms and	prevention.							
Non-destru	ctive testing n	nethods for metals	5.							
Corrosion:	types of corr	rosion, mechanis	ms, selection of appropriate corros	ion preventio	on methods,					
application	of the selected	d methods.								
Surface tre	atment method	ls.								
Ceramics		· ·								
Properties a	and application	ns of ceramics.								
Polymore	eauments for ce	erannics.								
Advantage	s of polymer n	naterials over trad	itional materials							
Classificati	on of polymer	s. Natural and svi	nthetic polymers							
Polymers (Polymers (Elastomers Plastics Fibres Thermoplastic Elastomers) used in the process industry their									
structure-p	structure-property relationships, and applications.									
Polymer la	ttices, Compos	sites, blends, and	alloys.							
Smart poly	meric material	s and advanced p	olymeric materials.							
Additives u	used in polyme	er products.								
Material S	election for C	Chemical Enginee	ering Applications							

4 CH4501 Chemical Kinetics and Reactor Design C GPA Hours/Week Credits Prerequisites / Corequisites Evaluation % 3 2 4.0 CH1061, CH1051, CH1044, CH2160, CH2631, CH2015 40 60 Learning Outcomes Completion of this module, students are able to: 0 LO1: Recognize the reaction scheme and determine the rate law . . LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions . LO3: Design batch reactors, for the chemical and process industry . LO4: Determine a suitable reactor or a system for an application or a condition . LO5: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions . LO6: Analyze and non-flow reactors. Syllabus Outline Syllabus Outline Syllabus Aradize and non-flow reactors. Conversion and reactor design. Industrial application of the order of a reaction. Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction scheme as equation. Multiple reactions Molecular reactor designing: . . . <t< th=""><th>Semester</th><th>Code</th><th></th><th>Module Title</th><th>C/E/O</th><th>GPA / NGPA</th></t<>	Semester	Code		Module Title	C/E/O	GPA / NGPA			
Hours/Week Credits Prerequisites / Corequisites Evaluation % 1 Lecture Lab/Tutes CA WE 3 2 4.0 CH1061, CH1051, CH1044, CH2160, CH2631, CH2015 40 60 Learning Outcomes On successful completion of this module, students are able to: • LO1: Recognize the reactions scheme and determine the rate law • LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions • LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry • LO4: Determine a suitable reactor or a system for an application of residence times • LO5: Analyze chemical reactor performance using the distribution of residence times • LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Conversion and reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal react	4	CH4501	Chemical	Kinetics and Reactor Design	С	GPA			
Lecture Lab/Tutes Credits Prerequisites / Corequisites CA WE 3 2 4.0 CH1061, CH1051, CH1044, CH2160, CH2631, CH2015 40 60 Learning Outcomes On successful completion of this module, students are able to: LO1: Recognize the reaction scheme and determine the rate law LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor performance using the distribution of residence times LO6: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemissorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative	Hour	s/Week	<i>a</i>		Evalu	ation %			
3 2 4.0 CH1061, CH1051, CH1044, CH2015 40 60 Learning Outcomes On successful completion of this module, students are able to: • LO1: Recognize the reaction scheme and determine the rate law • LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions • LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry • LO4: Determine a suitable reactor or a system for an application or a condition • LO5: Analyze chemical reactor performance using the distribution of residence times • LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reaction dynamics: Colsising: Collasion theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. State non isothermal reactor designing: Liquid phase reactions and gas phase reactions. State non is	Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
Learning Outcomes On successful completion of this module, students are able to: • LO1: Recognize the reaction scheme and determine the rate law • LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions • LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry • LO4: Determine a suitable reactor or a system for an application or a condition • LO5: Analyze chemical reactor performance using the distribution of residence times • LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Definition, properties and classifications of catalysts, Steps in catalysis and Catalytic reactors, Definition, properties and class	3	2	4.0	CH1061, CH1051, CH1044, CH2160, CH2631, CH2015	40	60			
 On successful completion of this module, students are able to: LO1: Recognize the reaction scheme and determine the rate law LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reaction granters: Classification of chemical reaction dynamics: Colision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalysis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times 	Learning	Outcomes							
 LO1: <i>Recognize</i> the reaction scheme and determine the rate law LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Istohermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalysis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	On success	ful completion	n of this module, s	students are able to:					
 LO2: Understand the theories of adsorption and apply them in controlling the rates of reactions LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times 	•	LO1: Recogn	<i>tize</i> the reaction so	cheme and determine the rate law					
 reactions LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. State non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	•	LO2: Unders	stand the theories	of adsorption and apply them in cor	trolling the ra	ates of			
 LO3: Design batch reactors, plug flow reactors (PFRs), continuous stirred tank reactors (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times		reactions			U U				
 (CSTRs) and catalytic reactors for the chemical and process industry LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Istehermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Adiabatic operations Horsproton and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	•	LO3: Design	batch reactors, pl	ug flow reactors (PFRs), continuou	s stirred tank	reactors			
 LO4: Determine a suitable reactor or a system for an application or a condition LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor designing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Honogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times		(CSTRs) and	catalytic reactors	for the chemical and process indust	try				
 LO5: Analyze chemical reactor performance using the distribution of residence times LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times 	•	LO4: Detern	<i>ine</i> a suitable read	ctor or a system for an application o	r a condition				
 LO6: Analyze and determine the concentrations of the reactants and products at certain stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times 	•	LO5: Analyz	e chemical reactor	performance using the distribution	of residence	times			
stages under given conditions Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	•	• LO6: Analyze and determine the concentrations of the reactants and products at certain							
Syllabus Outline Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times		stages under given conditions							
Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Syllabus C	Dutline							
continuous flow reactors and non-flow reactors. Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Introducti	on to kinetics	and reactor desi	gn, Industrial application of react	tors, Analysis	s of			
Classification of chemical reactions, Rate laws, Determination of the order of a reaction, Influence of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	continuous	s flow reactor	s and non-flow r	eactors.					
of temperature on reaction rates and Arrhenius equation. Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Classificat	ion of chemic	al reactions, Rat	e laws, Determination of the order	r of a reactio	n, Influence			
Multiple reactions, Molecular reaction dynamics: Collision theory and Transition state theory. Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	of tempera	ature on react	ion rates and Ar	rhenius equation.					
Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Multiple r	eactions, Mol	ecular reaction d	ynamics:					
Conversion and reactor sizing: Design Equations for flow reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Conversion	neory and Trai	sition state theory	/.					
Jestign Equations for now reactors, reactors in series. Isothermal reactor designing: Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Dogign Equ	in and reactor	sizing:	r in corios					
Liquid phase reactions and gas phase reactions. Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Isotherma	l reactor desi	ming.	s in series.					
Steady state non isothermal reactor designing: Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Liquid pha	se reactions ar	nd gas phase react	ions					
Adiabatic operations Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Steady sta	te non isother	mal reactor desi	ening:					
Unsteady state non isothermal reactor designing: Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Adiabatic of	operations		B					
Batch reactors, Semi-batch reactors, unsteady energy balance. Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Unsteady s	state non isotl	hermal reactor d	esigning:					
 Physisorption and chemisorption, Adsorption isotherms (Langmuir, Freundlich), Non-competitive and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times 	Batch react	tors, Semi-bate	ch reactors, unstea	dy energy balance.					
and nondissociative Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Physisorp	tion and chem	isorption, Adsor	ption isotherms (Langmuir, Freu	ndlich), Non-	-competitive			
Catalysis and Catalytic reactors, Definition, properties and classifications of catalysts, Steps in catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	and nondi	ssociative				-			
catalytic reaction Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Catalysis a	and Catalytic	reactors, Definit	ion, properties and classifications	of catalysts,	Steps in			
Homogeneous and Heterogeneous catalysts: Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	catalytic r	eaction							
Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the distribution of residence times	Homogene	eous and Hete	rogeneous cataly	sts:					
	Synthesis,	applications, r	egeneration, and t	roubleshooting. Chemical reactor pe	erformance us	sing the			
	uistituutoi	i of residence	umes						

4	CU10070				110111
	CH2270		Laboratory Practices II	C	GPA
Hours/Week (spread over two semesters		Credits	Prerequisites / Corequisites	Evalu	ation %
ecture	Lab/Tutes			CA	WE
0	4	2.0	Prerequisites: CH2170 Corequisites: CH2151, CH2180, CH4501	100	0
lours/We over two .ecture 0	eek (spread semesters Lab/Tutes 4	Credits 2.0	Prerequisites / Corequisites Prerequisites: CH2170 Corequisites: CH2151, CH2180, CH4501	Eva CA 100	lu

Learning Outcomes

After completing this module, the student should be able to:

- LO1: *Apply* graphical construction techniques for process equipment.
- LO2: *Develop* 3-D models using a CAD package.
- LO3: *Apply* software tools to develop, simulate, and analyse mathematical models for reactors, separators, and heat exchangers.
- LO4: *Understand* the concepts and techniques relevant to applications in chemical and process engineering.
- LO5: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices II module covers the practical aspects in applications of Chemical and Process Engineering (CH2151, CH2180, and CH4501) and provides in-depth learning for engineering drawing and computer aided chemical engineering.

Engineering Drawing and Computer Aided Learning

Complete engineering drawing of process equipment using computer aided drafting software (SOLIDWORKS®).

Property analysis of chemical system using Aspen Plus®; Thermodynamic property methods, property analysis of pure components/binary/mixtures, VLE curves x-y diagram, ternary maps.

Process flow sheeting, simulation of equipment models and simulation of chemical process using Aspen Plus®; Development of mathematical models for reactors, separators, and heat exchangers (Excel and MATLAB®).

Laboratory Experiments (8 Sessions)

(1) Pressure drops in a packed bed and fluidized bed. (2) Filter press/Demonstration on centrifuge, cyclone, coagulation, and sieve analysis. (3) Pressure-drop over a bubble cap plate; H.E.T.P Distillation, (4) Soxhlet Extraction. (5) Adsorption. (6) Evaporation. (7) Batch reactor/ Plug flow reactor. (8) Determination of specific rate constant for first order hydrolysis of ethyl acetate.

Semester V

Semester	Code		Module Title C/E/O GPA / NGPA						
5	CH4045]	Process Dynamics and Control	С	GPA				
Hour	s/Week	Cualita	D ucano aministra / Como aministra	Eval	uation %				
Lecture	Lab/Tutes	Creatis	r rerequisites / Corequisites	CA	WE				
2	2	3.0	Prerequisites: CS1033, MA2014, MA3024 Corequisites: CH3034, CH3150	40	60				
Learning O	utcomes		· · · · · · · · · · · · · · · · · · ·						
After compl	eting this modul	le, students	should be able to,						
•	• LO1: <i>Describe</i> the behaviour of 1st, 2nd and higher order dynamical systems.								
•	LO2: Analyze li	near dynam	ical systems using mathematical tools such	ch as Lapla	ce				
	transforms etc.	5	, ,	1					
•	LO3: Set up sin	ple feedbac	ck loops using PID controllers and develo	pment of co	ontrol				
	modules.	1	1 5						
•	LO4: Implemen	t various PI	D tuning methods for controllers.						
•	LO5: Design an	nd Develop	feedback controllers with various control	methods to	eliminate				
	disturbances.	a Deretop .							
•	LO6: Implemen	t and test or	it their controller designs by using simula	tions					
Syllabus Or	utline	i und test of	w aren controller designe of asing billiara						
Introduction	to Process Dyna	mics & Cont	rol						
and unmeasur Dynamic Bel Stability of D Understand so An Introductor Transfer Func Lag Models. Introduction Development Disturbances, PID Controll Closed-Loop (DS) method, Feedback Des Cascade and Cascade-Com Structure, Con Various cont Ratio Control Frequency-R Bode and Ny Robustness. Control-Loop	red), and constrain aviour Dynamic systems econd-order under tion to Laplace tr tion, Definition of ction Analysis of to Feedback Con of Control Block Open-Loop Unst ter Tuning Oscillation-Based , Internal Model of sign for Processes Feed-Forward C trol Analysis, Ca mbined Feed-Forw rol methods and , Selective and Ox tesponse Analysis quist Plots, Effect p Interaction	ts (hard or so understand fi -damped beh ansformatio The Laplace First-Order S ntrol Diagrams, F able Systems I Tuning, Tui Control (IMC with a Time Control (IMC with a Time Control strucy vard and Case control strucy retride Contro sct of Process	ft), as well as classify the process as continuous rst-order, first order + dead time and integrat aviour, Routh Stability Criterion. n Transform, Poles and zeros, Time constant and systems, Responses of First-Order Systems. In Response to Setpoint Changes, Effect of Tunir , ning Rules for First Order + Dead Time Proce C), IMC-Based Feedback Design for Delay-FDelay, IMC-Based Feedback Design for Delay-FDelay, IMC-Based PID Controller Design for col Design, Feed-Forward Control, Feed-Forward Control, Feed-Forward Control, Feed-Forward Sol, Split-Range Control.	s, batch, or so ing system a resonance, 7 ategrating Pr ag Parameter esses. The D ree Processo Unstable Pro ward Contro ode and Ny	varies Variable				
The General I Pairings. Plantwide Co Steady-State	Pairing Problem, 7 Ontrol and Dynamic Effe	The Relative	Gain Array, RGA and Sensitivity, Using the F e. The Control and Optimization Hierarchy.	GA to Dete	rmine Variable				
Fuzzy logic c Identification Fuzzification,	ontrol system of variables, Fuzz Combining fuzzy	zy subset con v outputs, Def	figuration, obtaining membership function, Fu	zzy rule base	configuration,				

Semester	Code		Module Title C/E/O GPA NGPA						
5	CH3045	Plant Safe	Plant Safety, Health and Environment C						
Hours	s/Week	Credita	Provoquisitos / Conoquisitos	Evaluation %					
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE				
7/2	1	4.0	None	30	70				
Learning Outcomes									
On suc	 On successful completion of this module, students are able to: LO1: <i>Describe</i> basic principles related to safety and loss prevention in chemical and process industry. LO2: <i>Understand</i> environmental pollution and related problems. LO3: <i>Describe</i> environmental pollution control and management. LO4: <i>Explain</i> principles of sustainability. LO5: <i>Discuss</i> basics of safety in plant site layout design, operation, maintenance and modification and basics. of incident reporting, investigation and management and legislative framework. LO6: <i>Identify</i> hazards in chemical and process industry. LO7: <i>Apply</i> appropriate techniques or measures to avoid or reduce hazards. LO8: <i>Analyse and evaluate</i> hazards in chemical and process industry. 								
Fire and ex Safety stra Inherent sai Identificati HAZOP, ex Personal p Noise and Plant layou maintenan SHE incide Toxic relea Legal back Health and Precaution Introduction Environme Environme Environme Introduction Introduction Environme	xplosion haza tegies: fety, active, pa ion of process yent tree, fault rotective equi ventilation, th at design for s ce and modifi ent and near a se and disper sground: safety at work ary principle on to environ eous, and solid on to environ ent related internal Manage of engineering ental protectio on to waste m	rds ssive, and procedu hazards, princip tree pment, Ergonom afety, hazardous cation, relief, and niss reporting, in sion , responsible card nental pollution: pollutants, their s nental impacts ernational agrees ment Systems g for sustainabilition regulations inimization and p	ural safety oles of risk assessment and safety m nics, Industrial diseases area classification, safety in plant of d blowdown. avestigation and management, hum e sources, and characteristics ments ty pollutant treatment methods: at sou	anagement: operation, an factors in rce and 'end-o	safety ıf-pipe'				

Semester	Code		C/E/O	GPA / NGPA					
5	CH3034	Pro	cess Equipment Design	С	GPA				
Hours/Week		Creadita	D ucano aministan / Companyinistan	Evaluation %					
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE				
3	2	4.0	CH1044, CH1051, CH2015, CH2210	40	60				
Learning C	Learning Outcomes								

After completing this module, student should be able to:

- LO1: *Understand* process equipment design philosophy, design codes, and standard formulae for economical and safe design of process equipment and auxiliaries
- LO2: *Explain* the operational principals of process measurement and instrumentation
- LO3: *Select* the design preliminaries and considerations, and auxiliaries for vertical and horizontal process vessels for safe design
- LO4: *Apply* mechanical design fundamentals for estimation of stresses in cylindrical process vessels, spherical and conical shells, and end closures
- LO5: *Calculate* safe thicknesses and requirements for compensation in openings for process equipment
- LO6: *Design* tall towers under combine loads and process vessels under external pressure to avoid their collapse
- LO7: *Apply* knowledge in Principals of Fluid Dynamics, Thermodynamics, and Heat transfer for economical and safe design of piping systems, turbines and compressors, and heat exchangers

Syllabus Outline

Mechanical design fundamentals

Bending moment and shear force, Bending stresses, Deflection, Buckling, Torsion, Impact loading and combined loading, General two-dimensional stress system, Principal stress and strain, Plain strain, Theories of failure, Analysis on failure criteria

Types of cylindrical shells and pressure vessels

Thin-walled cylinderical shells, Thin-walled spherical and conical shells, Volume changes of shells, Thick-walled cylinderical shells, Internal and external pressure vessels, end closures (flat, ellipsoidal, torispherical, and toriconical covers)

Mechanical design preliminaries and considerations for process equipment

Process equipment design codes, Structure of ASME boiler and pressure vessel codes, Classification of process equipment, Design pressure, Design temperature, Material Selection for process equipment, Design stress, Methodology, and procedure for mechanical design of process equipment, Welding types and efficiency, Safe design factors and allowances, Process equipment fabrication techniques

Internal Pressure Vessels Design

Mechanical design calculations for Thin walled and Thick-walled internal pressure vessels, Design of process equipment supports, Stiffener rings and auxiliaries, Compensation for openings, Anchor bolts, Vessel Installation

External Pressure Vessel Design

Mechanical design calculations for Thin walled and Thick-walled external pressure vessels **Design for combined loading on vessels and columns**

Design calculations for pressure vessels under combined loadings, such as weight loads, wind loads, external loads due to varios factors

Mechanical design of pipes, turbo machines, and heat exchangers

Pipe schedule number, Safe pipe thickness calculations and economic pipe diameter, Mechanical design calculations for pumping requirements, Mechanical design awareness for gas turbines/compressors,

TEMA design standards for tubular heat exchangers, Mechanical design awareness for heat exchangers **Process measurement and instrumentation**

Measurement techniques and intrumentation for temperature, pressure, level, flow, and mass/force parameters in process equipment operations

Semester	Code		Module Title	C/E/O	GPA / NGPA						
5	CH3055	Ener	C	GPA							
Hour	s/Week	Elici	gy Systems Engineering	Evalua	tion %						
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE.						
2	2	3.0	CH1051 CH1044 CH1061	40	60						
-	-	5.0	CH2015	10	00						
Learning	Outcomes			•							
After comp	After completing this module, the student should be able to:										
•	LO1: Unders	tand the energy p	roblem and identify the need for energ	gy efficiency	and						
	conservation.										
•	• LO2: Analyze combustion in steam and heating systems.										
•	LO3: Identify	losses and evaluation	ate the performance of energy systems	8.							
•	LO4: Apply r	ecovery methods	to the energy systems.								
•	LO5: Analyze	e energy systems	by performing energy audits.								
•	LO6: Evalua	te technical, envir	conmental, and economic feasibility of	energy proje	cts.						
Syllabus C	Dutline		· · · · · · · · · · · · · · · · · · ·								
Introducti	ion to industri	al energy system	s								
Country an	nd world energ	y balance, The en	ergy problem, Need for energy efficie	ency and cons	servation in						
industrial e	energy systems			-							
Combustie	on in steam ar	nd heating system	18								
Fuel types,	, Combustion t	heory, Efficient co	ombustion, Combustion equipment.								
Industrial	steam system	s									
System de	scription (boil	ers, steam distrib	oution system, steam end users, con	densate retui	n system),						
System and	d subsystems p	erformance defini	tions.								
Boiler subs	system - Boiler	performance ana	lysis (direct/indirect methods, boiler l	osses), Facto	rs affecting						
boiler perfe	ormance (boile	r load, boiler desig	gn, fouling, controls, water quality), Pe	erformance in	provement						
opportuniti	ies (combustion	n efficiency impro	ovement, load scheduling, waste heat r	ecovery, wate	r treatment						
improveme	ent, control imp	provement).									
Steam dist	tribution and	condensate retur	<i>n subsystem</i> - Performance analysis	s, Factors af	fecting the						
performance	ce (steam lea	ks/heat transfer	loss through insulation/condensate	loss/flash st	eam loss),						
Performance	ce improvemen	it opportunities.									
Heating sy	stems	(Overa Eumos	Kilne) Operation Derformence a	valuation (dia	a at /in dire at						
Types and	Classifications	ovens, rumace	es, Killis), Operation, Performance ev	valuation (un	ect/mairect						
Defrigerat	tion systems	-saving and recov	ery opportunities.								
Chilling	and chilled st	orage freezing	deen freezing cold storage dee	n cold stor	age vapor						
compression	on/absorption	systems performs	ance definitions factors affecting pe	rformance n	erformance						
analysis n	erformance im	provement oppor	tunities (maintenance control operat	ional - load/t	emperature						
lift/superhe	eat)	provement oppor	tunities (municellunce, control, operat		emperature						
Compress	ed air systems	6									
System des	scription, Perfe	ormance analysis	(performance indicators, performance	e graph), Mea	surements,						
Leakage de	etermination (l	oad-unload test, p	ump-up test), Performance improvem	ent opportuni	ties						
Industrial	electric powe	r systems									
Description	n of industrial	electric power	systems, Basic terms, Tariff system	n, Main com	ponents of						
industrial	electric powe	r systems, Perfo	ormance assessment of industrial e	electric powe	r systems,						
Performan	ce improveme	nt opportunities (load management, demand control,	power factor	correction,						
electric mo	otor drives).										
Energy ma	anagement										
Main com	ponents, goals	, and phases of e	energy auditing, Economic and envir	ronmental ev	aluation of						
energy pro	jects										

Semester	Code		Module Title	C/E/O	GPA /						
5	CH3150	Chamical Pr	ocass Synthesis and Integration	C	GPA						
5	C115150	Chemical Process Synthesis and Integration C OF									
**	(117)										
Hours	s/Week	Credits	Prerequisites / Corequisites	Evalua CA	tion %						
2	2	3.0	CH1061, CH1051, CH2015,	40	60						
		CH2180, CH4501									
Learning (Learning Outcomes										
On su	ccessful comp	letion of this mod	ule, students are able to:								
•	LO1: Descrit	be and Distinguish	h process synthesis methods.								
•	LO2: Condu	ct process econom	iics.								
•	LO3: Unders	stand reactor and s	separator performances.								
•	LO4: Select 1	reaction and separ	ation systems.								
•	LOS: Apply]	binch analysis to e	and heat integration of unit operation								
	LOO. Evalua	and ontimiza hea	t recovery networks	41 5 .							
Syllabus ()	Dutline	<i>una optimize</i> nea									
Introducti	on to process	aunthosis and In	togration								
Chemical	products For	mulation of des	ign problem Process synthesis to	chniques on	ion model						
continuous	and batch pro	cesses.	ign problem, ribeess synthesis a	confiques, of	non model,						
Process ec	onomics										
Capital and	l operating cos	sts, Simple econon	nic criteria.								
Selection of	of reactor and	of separator, op	erating conditions, and configurati	ions.							
Reaction,	separation and	d recycle systems	s for continuous and batch proces	ses. Function	of process						
recycling r	ecycle with pu	rging.									
Introducti	on to Pinch A	nalysis	n 1	T.1.11.	du D'al						
Data Extra	Crid diagram	Threshold proble	and capital cost targeting, Problem	i Table algor	iunin, Pinch						
Utility sele	orid diagram,	The shold proble									
Multiple ut	ilities. Grand	Composite Curves	s. Heat cascading, minimum approac	h temperature.							
Heat Exch	anger Netwo	rk Design		1							
Types of he	eat exchangers	, Number of heat	exchanger units, heat exchanger targ	et area							
Design HE	N using pinch	principles Loop H	Breaking, stream splitting.								
Combined	Heat and Po	wer generations									
Introductio	n to heat pump	ps and engines into	egration to process.								
Furness of	Fation of furn	ace,	f Heat nines Deconstrative and reces	narativa hast s	vehancera						
Heat Integ	ration of read	ar energy trade of	i, meat pipes, Recuperative and leger	nerative neat e	achangers.						
Endotherm	ic and Exother	mic Reactors.									
Heat Integ	ration of Sep	arators, Distillati	ion Columns, Evaporators and Dry	yers							
Apply soft	ware for desig	gn and optimizat	ion of heat recovery networks								

Intake	Intake 2020 Specialisation Chemical and Process Engineering							
Semester	Code		Module Title C/E/O GP/NG					
5, 6	CH3880	E	Engineer and Society		GPA			
Hours	/Week	Cours 194 m	D	Evalua	ation %			
Lecture	Lab/Tute	Credits	Prerequisites / Corequisites	CA	WE			
1	4	3.0	None	100	0			
T								
Learning	Outcomes	- d-1	11 ha abla ta t					
Arter comp	LO1: Demo its social co LO2: Demo the society LO3: Practa understandi LO4: Identi environmen LO5: Interp environmen LO6: Abilit LO7: Apply responsible	odule, students wi <i>nstrate</i> an underst <i>nstrate</i> an underst <i>ise</i> with integrity i ng of ethical issue <i>fy and apply</i> appro- tal hazards/ conse <i>oret</i> the engineers' tal conditions targ y to critique techn the knowledge ar professional engin	anding of the responsibilities of the tanding of the health, safety and env in the social context of the engineer so opriate tools/ techniques for the eva equences and risk assessment role in ethically assuring healthy, s geting the overall sustainable develo ology and skills gained of towards building neer.	e engineering p vironmental rec ing profession luation of heal safe and excelle opment of the s character as a	rofession and quirements of with an th, safety and ent ociety socially			
 Intro other and p Ethic profe confl ethic Inclu 	duction to En relevant cod publication sin the Socie essions, social licting scenari al behaviour	es of ethics, commercial specifies in sectors es of ethics, commercial workplace - l responsibility, et ios and problems is ting concepts – en	 Historical context, moral responsil nunity standards and personal responsil Respect for social & cultural value hical decisions as individuals, identiant the field of engineering, leading of suring that engineering products an 	bility, IESL coonsibility, ethic es, respect for of tifying ethical it organizations to d services are a	de of ethics, s of research other ssues, owards accessible			
and i Lega Healt mana Healt pract Envir overv intro Ethic Engi	nclusive of al 1 requirement th & Safety – agement th & Safety M ices, designir ronment – ma view of contro duction to em- cal issues in e neers' respon	Il users, and are as the related to engine Definitions, areas Management – Ma ing of health and sa anaging the genera olling and treatme vironmental impace merging technologi sibility in sustaina	s free as possible from discrimination eering practice – acts, ordinances and s and hazard identification, risk asso- nagement practices, local regulation afety management systems, special ation, transportation and disposal of out technologies, local standards and ct assessment gies able development	on and bias nd regulations essment, evalua ns, global stand topics waste in indus l EPL procedur	ation and lard and best stry, re,			

Industrial Training

Semester	Code		Module Title	C/E/O	GPA / NGPA				
Industrial Training	CH3994	I	ndustrial Training	С	NGPA				
Hours	s/Week	Cradita Dranavisitas / Concensisitas	Evalı	ation %					
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE				
-	-	6.0	None	100	0				
Learning (Outcomes								
After comp	 After completing this module, student should be able to, LO1: <i>Apply</i> knowledge and principles of chemical and process engineering. LO2: <i>Understand</i> industrial systems, procedures, practices, and professional ethics. LO3: <i>Design</i> solutions for industrial/engineering problems using modern tools and techniques. LO4: <i>Develop</i> soft skills and professional attitudes required for industrial environment. LO5: <i>Recognize</i> social cultural and environmental responsibilities as an engineer 								
Syllabus Outline									
Knowledge and principles of chemical and process engineering Process analysis, Process plant operations/maintenance/troubleshooting, Energy efficiency and conservation, Health-Safety-Environmental aspects of chemical processes, Process instrumentation and									

conservation, Health-Safety-Environmental aspects of chemical processes, Process instrumentation and software platforms for process control systems, Quality control/assurance and monitoring process parameters for process improvement/development, Process diagrams and engineering drawings.

Industrial systems, procedures, and practices

Administration/financial/general management/logistics/HSE/legal practices in an industrial organization, Practices of professional ethics/personal relations, Organizational practices for process efficiency improvement, Regulations and standards.

Semester VI

Semester	Code		Module Title C/E/O GPA / NGPA							
6, 7, 8	CH4751	R	esearch Project	C	GPA					
Hours	s/Week	Crodits	Proroquisitos / Coroquisitos	Evalu	ation %					
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE					
-	6	3.0	None	100	0					
Learning Outcomes										
After completing this module, student should be able to: • LO1: Review literature critically and identify research gaps/problem. • LO2: Develop new experimental set ups/ models/strategies. • LO3: Develop creative thinking and self-integrity under challenging environment. • LO4: Analyze experimental/modelling results and draw conclusions. • LO5: Produce research findings as a publishable material.										
Backgrou Literatur Research Design of Methodo Data ana Reporting	ind study and e review proposal deve c experiments logy developm lysis and inter g and publicat	problem identifica clopment ent and experimen pretation ion of results	tion Ital work/modeling and simulati	on						

Semester	Code		Module Title	C/E/O	GPA / NGPA
6	CH3170	La	boratory Practices III	С	GPA
Hours/Week		Creadita	Promo anniaitea / Como anniaitea	Evaluation %	
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE
-	6	3.0	CH1051, CH2170, CH2270,	100	0
			CH2210, CH3045, CH3055,		
			CH4045		

Learning Outcomes

After completing this module, the student should be able to,

- LO1: *Develop* detailed drawings of process equipment.
- LO2: Construct P&I diagrams for chemical equipment and processes.
- LO3: Analyse chemical processes using process simulation tools.
- LO4: *Develop* numerical models of a process and build computer models for simulations by using computer aided tools.
- LO5: *Employ* advanced concepts and techniques relevant to applications in chemical and process engineering.
- LO6: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices III module covers the application and design aspects in Chemical and Process Engineering (CH1051, CH2210, CH3045, CH3055, and CH4045) and provides in-depth learning for engineering drawing and advanced computer aided chemical engineering.

Engineering Drawing and Computer Aided Learning.

Detailed drawing of process equipment with auxiliaries (assembly drawing) using SOLIDWORKS®. Development of P&ID using suitable software packages.

Advanced process analysis tools in Aspen Plus® (design specifications, calculator blocks, sensitivity analysis, optimization tools).

Challenge based project work.

Development of a numerical model of given process and analyse system dynamics by simulations. Develop suitable control structure to tight control of quality parameters and eliminate disturbances. Development of SIMULINK® and LabVIEW models to simulate the control structure to understand control behaviour.

Laboratory Experiments (8 Sessions).

(1) Rankine cycle, Steam analysis. (2) Corrosion (3) Identification of Polymers (4) Determination of properties of petroleum (flash point, fire point, aniline point, etc.). (5) COD, TS, TDS, TSS, and VSS of wastewater. (6) Determination of DO, residual chlorine, alkalinity, and pH. (7) Tuning PID controller for air heater (8) Introduction of ladder programming to control process engineering applications by PLC.

Semester VII

Semester	Code	Module Title C/E/O GPA NGP								
7	CH4016	Compre	chensive Design Project I	С	GPA					
Hours	s/Week	Credita	Propagnisitas / Conagnisitas	Evalu	ation %					
Lecture	Lab/Tutes	Creatis	Credits Prerequisites / Corequisites		WE					
-	8	4.0	None	100	0					
Learning (Learning Outcomes									
•	LO2: Conduc LO3: Apply c LO4: Develo LO5: Perforn LO6: Develo	ct a design project chemical synthesis p process flow dia n sustainability ar p skills on teamw	with a significant degree of engine s and process synthesis techniques agram and perform mass and energe halysis for a process plant ork, technical reporting, and preser	eering compe y balance ntation	tence					
Syllabus O Market Aı	outline nalvsis:									
Determine	the suitable pl	ant capacity								
Chemical	Synthesis of t	he process:								
Select the c	chemical pathv	vay based on gros	s profits using bulk material prices							
Process Sy	nthesis:									
Identify the	e design tasks	and the major u	nits, identify other required units t	to eliminate t	the changes in					
temperature Process flo	e, pressure, co	mposition, and ph	ase							
Sequence f	he tasks with i	ntegrated unit one	rations ensuring energy recovery	develop the p	rocess flow					
diagram	ne usks with i	inegrated and ope	rations ensuring energy recovery,	develop the p	100033 110 W					
Material a	nd Energy Ba	lance:								
Select the u	unit basis and t	he system bounda	ary, Detailed material and energy ba	alance for the	e process,					
Material an	d Energy flow	vsheet								
Sustainabi	lity Assessme	nt of the process	:	1126						
Environme	ntal Sustainab	inty: Top level Er	vironmental impacts assessment, L	Leopoid Matri	IX					
HAZOP)	lamaonity. Kis	sk Assessment (e	.g., Fault-free analysis), Safety an	u nealul Ass	sessment (e.g.,					
Economic	Sustainability:	Cost-benefit anal	vsis							
Site selecti	on and Plant	layout:								
Site selecti	on: Based on H	Raw materials, La	nd, Transportation, Labor, Infrastru	cture facilitie	es, Utilities,					
Governmen	nt Policy, Safe	ty and Environme	ent, Sustainability requirements							
Plant layou	t development									

Semester	Code		Module Title	C/E/O	GPA / NGPA					
7	CH4120	Biof	uels and Biorefineries	Е	GPA					
Hours	s/Week	a 14		Evalu	ation %					
Lecture	Lab/Tutes	Credits	Credits Prerequisites / Corequisites		WE					
2	2	3.0	CH1061, CH4501	40	60					
Learning (Outcomes									
After comp	After completing this module, the student should be able to,									
•	LO1: Unders	atand the basic cor	ncepts of biofuels and biorefinery.							
•	LO2: <i>Recogn</i> in conversion	<i>tize</i> the applicability of biomass to bio the technical and e	ty of chemical, biological and phys ofuels and value-added chemicals.	ical process to	echnologies					
•	LOS: Compa LOA: Select of	witable technolog	ies of trending biomass to biofuel/b	iochemicals o)r					
-	biomaterials	conversions.	ies of trending biolitass to biolacity	ioenenneuis (
•	LO5: Apprai	se suitable modula	ar process systems for selected conv	version techno	ologies.					
•	LO6: Design	modular process	systems for biorefinery.		8					
	0	1	5							
Syllabus O	Outline									
Introducti	on									
Definition,	objective of b	iorefinery, feedsto	ock classification, and composition,	, product rang	ge – Biofuels,					
Biomateria	ls, Biopolyme	rs, platform chem	icals and speciality chemicals, limit	ations, and in	npacts.					
Assessmen	t on site-speci	The Teedstock avail	lability and identify potentials amor	ig different bi	omasses.					
Physical or	nd Thormoch	y omical processes	in biorofinory							
Mechanica	l crushing Illt	rasound treatment	Microwave treatment Liquefaction	n Torrefactio	on Pyrolysis					
and Gasific	retion	rasound treatment	i, Mierowave treatment, Elqueraette	ni, Torreraetto	511, 1 y101y515,					
Chemical a	and Biologica	l processes in bio	refinerv							
Hydrotherr	nal, Acid, and	alkali pre-treatme	ents/Catalysis /Hydrotreating/Anaer	obic reactions	3					
Character	ization of pro	perties of biofuel	s							
Calorific va	alues, fuel spe	cifications, proper	ties of blends							
Character	ization of oth	er products								
Matching b	oiochemicals a	nd biomaterials fo	or industries							
Techno-ec	onomic anal	ysis of technol	ogies, processes, and product	range of	biorefinery,					
Environm	ental manage	ment of biorefine	eries							
Selection o	of feasible tecl	nologies, proces	ses, and product range for Sri La	nkan scenari	0:					
Case-based	l unit									
Design and	d Simulation	of modular proce	ess systems							

Semester	Code]	Module Title	C/E/O	GPA / NGPA				
7	CH4130	Proc	ess Optimization	Е	GPA				
Hours	s/Week				ation %				
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
2	2	3.0	CS1033, MA2014, MA3024,	40	60				
			CH3034, CH4045, CH2180,						
			CH1044, CH2015, CH4501						
Learning Outcomes									
After comple	Ol Degewike the	e, students should be	able to,						
• 1	OI: Describe u	d optimization theory	and methods						
• 1	O2: Undersidna O3: Identify too	<i>a</i> optimization theory	y and memous	into compu	utational				
• 1	nethods and also	orithms	non and translates these concepts	into compu	itationai				
• 1	.04: Construct	process engineering	models for optimization						
• I	.05: Formulatio	on of the objective fu	nctions						
• I	.O6: Apply optin	nization techniques	to chemical and process engineeri	ng					
Svllabus Out	tlino	•							
Formulating	the problem								
the nature and	d organization of	f optimization proble	ms. Scope and Hierarchy of Optin	nization. Th	ne Essential				
Features of C	ptimization Pro	blems.	,	,					
Developing r	nodels for opti	mization							
Classification	of Models, Deg	grees of Freedom, In	equality and Equality Constraints	in Models.					
Formulation	of the objectiv	e function							
Economic Ol	pjective Functio	ns, Efficiency Objec	tive function, The Time Value of	f Money in	n Objective				
Functions, M	easures of Profi	tability.							
Optimization Design generation	n theory and m	etnoas iony Continuity of T	Aunationa NLD Drohlam Statama	nt Convo	tty and Ita				
Applications	Interpretation of	on: Continuity of F	tion in Terms of Its Quadratic	nt, Convex	any and its				
Optimization	of unconstraine	ed functions: one-dir	mensional search Numerical Met	hods for O	ntimizing a				
Function of (One Variable. So	canning and Bracket	ing Procedures. Newton and Quas	si-Newton]	Methods of				
Unidimension	nal Search, Poly	nomial Approximati	on Methods.						
Unconstraine	d multivariable	optimization: Metho	ds Using Function Values Only, N	lethods Th	at Use First				
Derivative, N	lewton's Method	l, Quasi-Newton Me	thods.						
Linear progra	amming (LP) ar	nd applications: Geo	metry of Linear Programs, Basic	Linear Pro	ogramming				
Definitions a	nd Results, Sim	plex Algorithm, Sens	sitivity Analysis.	a 1					
Nonlinear pr	ogramming wit	h constraints: Direc	t substitution, First-Order Neces	sary Condi	tions for a				
Local Extrem	inger Programm	c Programming, Pe	d Reduced Gradient Method Red	Lagrangian	n Methods,				
Disadvantage	s of NI P Metho	ning, The Generalize	a Reduced Gradient Method, Re-	auve Auva	intages and				
Mixed-intege	r programming	: Branch-and-Boun	d Methods Using LP Relaxation	ons. Solvir	ng MINLP				
Problems Usi	ng Branch-and-	Bound Methods, Sol	ving MINLPs Using Outer Appro	ximation.					
Global optin	nization for pro	blems with continu	ous and discrete variables						
Methods for	Global Optimiza	ation, Multi-start Me	thods, Heuristic Search Methods,	Genetic alg	gorithm.				
Case studies									
Applications	of optimizatio	on, Optimization of	t Heat transfer and energy of	conservatio	n process,				
Optimization	of Separation p	rocesses, Optimizati	on of Chemical reactor design and	i operation.					

Semester	Code		Module Title	C/E/O	GPA / NGPA				
7	CH4140		Biotechnology	Е	GPA				
Hour	s/Week	Cuadita	Evaluation %						
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE				
2	2	3.0	None	40	60				
Learning Outcomes									
After comp	Learning Outcomes After completing this module, the student should be able to: • LO1: Appraise the impact of biotechnology in society • LO2: Discuss and differentiate biotechnology, bionanotechnology, and nanobiotechnology • LO3: Demonstrate comprehensive knowledge and interdisciplinary skills in the field of biotechnology for synthesis of bioproducts and assessment of product quality • LO4: Categorize and use techniques utilized to engineer cells and organisms for biotechnological applications • LO5: Design and develop products and processes for medical and industrial applications using knowledge and transferable skills in biotechnology • LO6: Evaluate the applicability of biotechnology to provide sustainable solutions for contemporary issues in science								
Engineerin Bio-based recombinan Enzyme te Isolation an immobilize Biopharm Introductio technologic chain integ Future me Drug deliv and biologi Biomolecu Biotechnol Analytical Quantitativ analysis of Biossor	Ig cells and of products and at DNA technology: and purification ad enzymes aceuticals: an to pharmace es, economics rity of pharma dicine: ery and therap ical/cell-based des for human ogical product techniques in re and qualitati biochemical/	gamsms for blog industries, cellui ology, mutagenesi of enzymes, enz utics and pharmac of biomanufacturi ceuticals eutics: Conventio therapies, gene the use/consumptio ion of flavours, nu biotechnology: ve analysis of biop iological processes as control.	processes: lar bioprocesses, DNA, gene expr s, antisense technology, OMICS, bi symes in medical applications, enzy cology, biopharmaceuticals, fundaming pharmaceuticals, regulation and onal medical devices, drug delivery, herapy, and tissue engineering on: utraceutical production products, analytical techniques and it es and metabolic activities	ression, prote oinformatics /mes in proce ental bioproce quality appro mechanical/e	ein synthesis, ess industries, esses and new aches, supply electric-based				
Biosensors Biosensors in bioreme Vaccines a Viruses, pa epidemiolo Bionanote Natural an nanoparticl inspired na	and bioproce in medical ap diation and vaccine de undemics and gy, developme chnology and d incidental es, biological nostructures an	ess control: plications, biosen evelopment pathy immunity, history ent of diagnostic t nanobiotechnolo nanoparticles, en ly inspired nanos nd materials, micr	sors in industrial applications, path ways: v of infectious diseases, basics of v ests, vaccines, and antiviral therapic ygy: gineered nanoparticles and their s tructures/biomimetics, industrial ap ofluidics	ogen detectio virology, imm es syntheses, ap pplications of	on, biosensors nunology, and oplications of f biologically				

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4160	Process	s Chemicals Management	Е	GPA			
Hour	s/Week	Credita	Pronoguicitos / Conoguicitos	Evalu	ation %			
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH1071, CH4501, CH3045	40	60			
Learning	Outcomes							
Syllabus C	 LO1: Understand the Importance of chemicals management in chemical and process industries. LO2: Recognize the national and international regulations on chemicals management. LO3: Select and apply the suitable chemicals management concepts, guidelines, and tools. LO4: Demonstrate the ability to develop a suitable chemicals management system for a process industry. LO5: Discuss the principals of green chemistry and its benefits. LO6: Apply the principles of green chemistry for process industry. 							
Importance National a Chemicals Main steps Technique Chemical Applicatio	e of chemical nd internatio s management s of lifecycle o es for chemica labelling syste ns of green cl	s management fo nal regulations o concepts and to f chemicals l waste managen ems nemistry principa	or the chemical and process indust n chemicals management ols nent and disposal als	tries				
Applicatio Case studi	ons of green ch	nemistry princip: nemistry	als					

Semester	Code		Module Title	C/E/O	GPA / NGPA
7	CH4371	Petrole	um Trade and Economics	Е	GPA
Hour	s/Week	Creadita	Promo anniaitan / Como anniaitan	Evalu	ation %
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
2	2	3.0	None	30	70
Learning	Outcomes			•	
•	LO1: Descrit LO2: Evalua LO3: Analyz LO4: Descrit LO5: Select 1 product portf LO6: Design Processing fa	be economic persp te oil supply and of e Transport, Proce- be trade practices best financial instr- folio. operational proce- acilities.	pectives of Oil and Gas Industry. demand and its effect on the industry essing and Sales Costs of Petroleum pertaining to Petroleum Operations. ruments for purchasing petroleum cr edures for techno-economic feasible	y. Processing. rude oil and d operations ir	liversifying 1 Petroleum
Introducti A historica Oil and Ga Internatio Exploratio Effects of Economic Financial i Techno-ec	on I Perspective a as Industry M nal standards on & Producti Regional Poli Trends in Pet instruments u onomic feasib	and present Oil an larkets , guidelines and ion tics and Activitie troleum Industry sed in Petroleum ble operations in 1	d Gas Industry Overview directives related to oil and gas in s towards Petroleum Industry i Industry Petroleum Industry	dustry Inclu	ding

Semester	Code	Module Title C/E/O GPA							
7	CH4410	Р	Polymeric Materials	Ε	GPA				
Hour	s/Week	~		Evalu	ation %				
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
2	2	3.0	CH2210	30	70				
Learning Outcomes									
After comp • • • • • • • • • • • • •	Learning Outcomes After completing this module, students should be able to: • LO1: Identify the most suitable polymer/s for a given application. • LO2: Suggest suitable analytical technique/s for identification of a polymer material or a product. • LO3: Select reinforcing materials for a polymer composite. • LO4: Find solutions to control the degradation of polymers. • LO5: Explain the importance of using polymer blends and composites over a single polymer for specific applications. • LO6: Discuss the importance of advanced materials used for selected applications. Syllabus Outline Overview of Polymeric Materials: Elastomers, plastics, fibres, thermoplastic elastomers, lattices, and their uses								
Food phar	in packaging	maustry:	appliances						
Polymers	used in bioma	terials	appnances						
Polymer n	anocomposite	S							
Polymer H	Blends and all	oys							
High temp Matrix ma Advanced crystalline Biodegrad Nylon 6, P Degradatio Analysis o spectrosco	Polymer Blends and alloys Engineering Polymers: High temperature polymers and high strength polymers Matrix materials and reinforcing materials used in polymer composites Advanced polymeric materials (conductive polymers, responsive polymers, hydrogels, liquid crystalline polymers) Biodegradable polymers and their applications: poly (glycolic acid), poly(lactic acid), Nylon 2-Nylon 6, Polyhydroxybutyrate, polydioxanone (PDO) Degradation and stabilization of polymers: Thermal degradation, photo degradation, oxidative degradation, ozone degradation and biodegradation Analysis of polymeric materials: IR spectroscopy, UV spectroscopy, Nuclear magnetic resonance Purport provide the polymeric materials: IR spectroscopy and polymeric materials and polymeric materials and polymeric materials: IR spectroscopy and polymeric materials and polymeric matericond polymericond polymeric materials and polymericond								

Semester	Code		Module Title	C/E/O	GPA / NGPA				
7	CH4026	Process	Modelling and Simulation	Е	GPA				
Hour	s/Week	Creadita	Provennisites / Conservisites	Evalu	ation %				
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE				
2	2	3.0	CS1033, MA2014, MA3024, CH3034, CH4045, CH2180, CH1044, CH2015, CH4501	40	60				
Learning	Outcomes		· · · · · · · · · · · · · · · · · · ·	•					
•	 After completing this module, students should be able to: LO1: <i>Describe</i> systems and models, main elements of dynamic modelling. LO2: <i>Identify</i> process parameters to develop a mathematical model of a system. LO3: <i>Construct</i> state space models and linearize non-linear systems. LO4: <i>Evaluate</i> dynamics of the systems and processes. LO5: <i>Develop</i> numerical models of a process and build up computer models for simulations by using computer aided tools (Python/MATLAB/SIMULINK). LO6: <i>Analyze</i> processes by using simulation studies. 								
Syllabus C	Dutline d Model:								
Main elem Parameter Empirical Introduces Momentum Linearizat The State-S of the Gend Multiphas Packed Bed Unsteady-S Nonlinear Generaliza Nonlinear Diagrams, Artificial I Artificial N Engineerin Model Val Measures, Case Stud Biochemic	ents of Modell Systems, Mate model buildin Multi variable n, Thermal and ion of the nor Space Formula eral State-Space e Systems wit d Reactors, 1D State or Dynan systems analy tion of Phase-I Dynamics, A S Bifurcation an Neural Netwo Jeural Networl g lidation and S idation Method Statistical anal ies: al reactor, Dist	ing of Dynamic S rial and Energy B ng: Model Identifica Diffusion proces linear Models: tion, Interpretatio te Form h and without re and 2D Pseudo-Inic Models ysis: Plane Behaviour, J Simple Population d Orbit Diagrams rk–Based Model cs, Development of ensitivity Analys dology, Sensitivity ysis of mathemat	Systems, General Form of Dynamic Balances tion, Theory and Applications of Disses on of Linearization, Solution of the Z eactions: Homogeneous Model, 1D and 2D H Nonlinear Systems- limit cycle beha Growth Model, A More Realistic F s: of ANN-Based Models, Application sis: y Analysis, Direct Differential Methical models Evaporation process	Models, Lum stributed Sys Zero-Input Fo eterogeneous aviour. Introd Population Mo as of ANNs in nod, Global So	ped tems for rm, Solution Model, uction to odel, Cobweb Chemical ensitivity				

Semester	Code		Module Title C/E/O GPA						
7	CH4420	Waste Minimi	zation and Resources Recovery	Е	GPA				
Hours	s/Week	Credits	Evalu	ation %					
Lecture	Lab/Tutes	Creatis	Trerequisites / Corequisites	CA	WE				
2	2	3.0	CH3045	30	70				
Learning Outcomes									
After comp	 After completing this module, student should be able to: LO1: <i>Describe</i> waste management concepts relevant to the process industry. LO2: <i>Assess</i> cleaner production in the process industry. LO3: <i>Identify</i> source reduction and waste minimization opportunities and apply for waste management improvement of processes. LO4: <i>Select</i> resource recovery, recycling, and reuse techniques for waste. LO5: <i>Apply</i> process integration solutions for optimization of water consumption in the process industry. LO6: <i>Describe</i> circular economy theories and concepts in the process industry. LO7: <i>Analyze</i> existing and new processes for waste minimization, resources recovery and good manufacturing practices and waste management principles. 								
Introducti Extended p pays princip 5R Princip Source Re Resources Recycling Incineration Process int Water pinc Concept of Good Man Introducti Case Studi	on to Waste M roducer respon- ple, Resourcess le (Refuse, Re duction and V recovery fron and Reuse n, Engineered tegration solu h calculations f Cleaner Pro oufacturing Pro on to Circula ies for waste r	Management Con nsibility, Product s recovery, Waste r duce, Reuse, Repu Vaste Minimizati n waste techniques, Mate landfilling. tions for waste a and water networ duction and Clea ractices (GMP) r Economy and I ninimization and	acepts stewardship, Muda (Japanese term) management hierarchy, 3R principle irpose, Recycle), Waste-to-energy, ion erials Recovery Facility (MRF) voidance k design. aner Production Assessment ndustrial symbiosis I resources recovery	, Pay as you t e (Reduce, Re Zero waste. , Compostin	chrow, Polluter euse, Recycle), ng, Pyrolysis,				

	Code		Module Title	C/E/O	GPA / NGPA					
7	CH4430	Industrial Che	Industrial Chemical Manufacturing Processes		GPA					
Hours	Hours/Week Credita Prorequisites / Concentration		Evalu	ation %						
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE					
2	2	3.0	None	40	60					
Learning Outcomes										
After compl	After completing this module, the student should be able to,									
•	LO1: Unders	tand the production	on of chemicals and role in society							
•	LO2: Identify	the Global Chem	nical Process Industry							
•	LO3: Define	different Chemica	al Manufacturing Processes							
•	LO4: Illustra	te product value c	chains (Global and local value chain	s)						
•	LO5: Determ	ine Techno-econo	omics of Chemical Manufacture							
•	LO6: Assess	Environmental M	anagement concepts of Chemicals N	Manufacture						
Syllabus Or	utline									
Introduct	tion to Globa	l Chemical Proc	ess Industry (CPI)							
Chemical	s and their r	ole in society								
Dhoumhor	chemicals if	anulacture								
See based	Jus, Phosphat	es and refunzers								
Sea Dased	r – Alkali and	Related Heavy (Themicals							
Industria	l Gases and S	Sneciality gases	chemiears							
Industria	l Acids	speciality gases								
Sulphuric	. Hydrochlori	c. Nitric. HF								
Organic (Chemicals M	anufacture								
Speciality	fine chemic	al manufacture								
Pharmace	uticals									
Oleochem	nicals									
Soap, fatt	y acids, and s	unthetic chemical	s							
Natural p	oroducts man	ufacture								
Dairy pro	oducts manuf	acture								
Techno e	conomics of j	process operation	ns in chemicals manufacture							
Environn	nental Manag	gement aspects o	f chemicals manufacture							

Semester	Code		Module Title	C/E/O	GPA / NGPA					
7	CH4235	Polym	Polymer Processing Operations		GPA					
Hour	s/Week	Cruedite	Durana antiaitan / Cana antiaitan	Evalu	ation %					
Lecture	Lab/Tutes	Creatts	Credits Prerequisites / Corequisites CA		WE					
2	2	3.0	3.0 None 30							
Learning	Learning Outcomes									
After comp	 After completing this module, students should be able to LO1: <i>Identify and describe</i> the polymer processing operations related to rubber and plastic processing. LO2: <i>Discuss</i> the influence and importance of processing parameters on polymer processing operations. LO3: <i>Apply</i> rheological and heat transfer principles to optimize the polymer processing operations. LO4: <i>Recognize</i> the machineries used in polymer processing. LO5: <i>Analyze</i> products defects that can be appeared during respective polymer processing operations. LO6: <i>Demonstrate</i> the ability to select the most appropriate processing technique(s) for a desired polymer product to manufacture. 									
Syllabus C Polymers	Dutline and their ther	mal transitions	is priorices.							
Polymer R Non-Newto rheological Heat transf General eq heat transfe Concentra extrusion) Manufactu Mixing an Shaping/fd Moulding I moulding, Curing teo Batch and o New trend 3D printing	theology and a properties. fer in Polyme uation of cond er applications tion of latex; ure of differer d compoundin prming techni processes: Con Blow mouldin chniques continuous cur perations, pro is in polymer ja	Processing chara ir of polymer mel er systems uction; Steady and Products manufa at grades of raw in g technologies. ques for rubbers npression mouldin g; Extrusion and C ing processes. ocess variables at products manufa	acteristics ts; Processing characteristics: Visco d unsteady state heat conduction, co acturing techniques (dipping, casti rubber. and plastics ng, Transfer moulding, Injection mo Calendaring and their effects on product quality acturing	sity, melt flow onvection, and ng, foaming, oulding, React	w, l radiation spraying, ion injection					

Semester	Code		Module Title C/E/O GPA NGPA							
7	CH3253	Enviro	nmental Bioengineering	Е	GPA					
Hours	s/Week	Cara liter	Provide the Company of the	Evalu	ation %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE					
2	2	3.0	None	30	70					
Learning	Learning Outcomes									
•	 After completing this module, student should be able to, LO1: Understand basic principles of biological wastewater treatment. LO2: Explain the microbial conversion processes and operating parameters. LO3: Describe microorganisms according to energy source and carbon source. LO4: Evaluate biological systems by applying microbial kinetics. LO5: Develop mathematical models and simulate bioreactors. LO6: Design bioreactors 									
Syllabus O	outline	moniana								
Based on n	lon of microo	rganisms								
Microbial	growth kineti	ics								
Biomass gr	owth rate: rate	equations.								
Biological	wastewater ti	reatment princip	les							
Identificati	on of constitue	ents in wastewater	and basic parameters; aerobic and	anaerobic pr	ocess;					
nitrification	n, denitrificatio	on and phosphorus	s removal.							
Types of b	ioreactors an	d activated sludg	e process							
Bioreactor	classification	and their function	s; Activated sludge process.							
Introducti	on to bio proc	cess modelling								
Mass and e	energy balance	for bio reactors, o	design equation derivation; process	matrix; balai	ice growth					
Bioprocess	modelling to	ole								
Modelling	and simulation	using related sof	tware tools							
Environm	ental Bioengi	neering Case Stu	dies							
Industrial h	Industrial based case studies									

Semester	Code		Module Title C/E/O GPA NGP					
7	CH4440	Petroche	Petrochemical Process Operations		GPA			
Hours	s/Week		Buono aministra / Companyisitan Evaluation		ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3	None	30	70			
Learning (Outcomes							
After comp	leting this mo	dule, the student s	should be able to,					
•	LO1: Descrit	be key operations	in petrochemical processes.					
•	LO2: Demon	strate petrochemi	cal conversion pathways.					
•	LO3: Analys	e petrochemical c	onversion technologies.					
•	LO4: Apply p	petrochemical con	version technologies to petroleum r	esources and	economy in			
	Sri Lanka.							
٠	LO5: Design	and evaluate of a	process flow diagram for petrocher	nical convers	ion process.			
Syllabus O	outline							
Introducti	on to petroch	emical industry						
A brief or	verview of p	etrochemical tec	hnologies and discuss upon the	general topo	ology of the			
petrochemi	cal process teo	chnologies.						
Resource i	dentification	and evaluate pot	entials in Sri Lanka					
Evaluating	the unique po	sition Sri Lanka c	currently in the petrochemical indust	try, especially	⁷ Hambantota			
is becoming	g a petroleum	processing zone.						
Petrocnen	nical conversion	on pathways	number ontions used in industry of	nd diamaa na	wal stratagias			
to maximiz	e economical	agine	inversion options used in moustry a	nu urscuss no	wei strategies			
Petrochem	ical processi	gams. og nathwavs						
Discuss pro	cess engineer	ing fundamentals	behind the major conversion process	ses including	pre-treatment			
processes of	n petroleum s	treams as feedstoo	k for petrochemical manufacturing	plants.	pro doudinom			
A case stud	ly on design a	and simulation of	a petrochemical conversion proc	ess				
A selected	petrochemica	al process will b	be discussed for optimization of	operating par	rameters and			
mitigation	of environmen	tal and health risk	s involved.					

Semester	Code		Module Title	C/E/O	GPA / NGPA				
7	CH4285	Food Safet	y and Hygienic Plant Design	Е	GPA				
Hour	s/Week	<i>a</i> . 1 ¹		Evalu	ation %				
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	WE					
2	2	3.0	None	40	60				
Learning	Learning Outcomes								
After comp	pleting this mo	dule, the student s	should be able to:						
•	LO1: Develo	<i>p</i> an awareness or	the modern food chain.						
•	LO2: Identify	v food hazards and	1 necessary control mechanisms to i	mprove hygi	enic food				
	manufacturir	ıg.	,	1 58					
•	LO3: Unders	stand the regulator	ry requirements for hygienically des	sign processes	s.				
•	LO4: Design	plants and equipr	nent in compliance with standards a	and guideline	s for hygienic				
	design.	1 11	1	0	50				
•	LO5: Evalua	te food safety man	nagement systems and recommend	the preventive	e measures.				
Syllabus C	Dutline								
Introducti	on:								
Food safety	y key concepts	(hazard, risk, hyg	iene); Evolution of hygiene in food	plant design a	and operation;				
Supply cha	ins in the food	l industry-bottlene	ecks and issues		-				
Risks-Orig	gin and Natur	re:							
Food hazar	rds-biological,	chemical, and pl	hysical: prevalence, characteristics,	contemporar	ry monitoring				
methods, a	nd control mee	chanisms							
Hygienic I	Building Desig	n Essentials:							
General d	lesign issues	for factory into	eriors; Site selection and plant	layout; Sig	gnificance in				
segregation	1/zoning; Hygi	enic design of wa	alls, ceilings, and floors; Hygienic	design of sele	ected fixtures,				
utility syst	ems and proc	ess support syste	ms; Control of air borne contamin	nation (source	e and control				
systems)									
Hygienic i	Aquipment De	sign Essentials:	might accomment and requilatory requ	vinamanta, II.	voienie design				
of different	turnas of aquin	mant (alasad has	ting dry matter handling alastrical	neelesing n	gienic design				
seals valu	rypes of equip	tc)_ construction	materials minimum design ess	entials clear	ping systems,				
improved b	voienic contro	of by sensors and	future trends	cilitais, cicai	ing regimes,				
Hygienic F	Plant Oneratio	ons I-Verification	and certification of hygienic foo	d processing	nlants:				
HACCP: I	HACCP steps	identification o	f potential hazards, identify CCP	establish C	CP. establish				
monitoring	procedures, e	stablish corrective	actions, record keeping procedures	verification	: other quality				
systems (IS	SO 22000)		, r or or		, <u>1</u>				
Hygienic H	Plant Operation	ons II-Good man	ufacturing practices (GMP):						
Effective r	nanufacturing	operations and a	risk control; Use of standard ope	rating proced	lures (SOPs);				
Managing	risks (allergeni	c residue, insects,	personal hygiene, food transportation	on); Cleaning.	, Disinfection,				
and Sanitat	tion [Cleaning	kinetics and mech	nanisms; Cleaning of raw material, j	plants, and eq	juipment (CIP				
and COP),	packaging, od	our abatement; en	zymatic cleaning]						

Semester VIII

Semester	Code		Module Title	C/E/O	GPA / NGPA			
8	CH4035	Comprel	ehensive Design Project II C		GPA			
Hours	s/Week	Credits	Propagnizitas / Coroquizitas	Eval	uation %			
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE			
-	10	5.0	CH4016	0				
Learning (Outcomes							
After comp	pleting this mo	dule, student shou	Ild be able to:					
•	 LO1: <i>Appraise</i> key decisions to be made and relevant assessment criteria for equipment selection LO2: <i>Design</i> a selected process equipment in detail, including chemical, mechanical and operational aspects LO3: <i>Identify</i> the type of material and method of fabrication suitable for the equipment. LO4: <i>Select</i> control schemes and instrumentation. LO5: <i>Describe</i> the startup, shut down, operational, and maintenance procedure. LO6: <i>Analyze</i> safety and economic aspects of the equipment. LO7: <i>Develop</i> technical report writing and drawing skills. 							
Syllabus O	Outline							
Chemical 1 Introductio options for required fo Mechanica unit and cor of required	Design n of design pr selecting the s r mechanical of al Design, Pro l design calcu mponents; Desi instruments.	roblem including suitable process ed lesign, P & I, and cess Control, and lations of major u sign of the control	the design duty and design constr quipment; Chemical design calcula process safety. d Process Instrumentation unit, accessories and supports; Me structure for the process unit; P &	aints; Reviev ations; Desig cchanical dra I diagram and	w of alternative n specifications wings of major d Specifications			

Process safety, Operation, and Costing

Conduct hazard and operability study (HAZOP) and identify and analyze problems that may represent hazards to personnel or equipment; Devise startup – shutdown procedure, maintenance schedule and troubleshooting plan; Costing of the complete unit including instrumentation.

Semester	Code	Module Title C/E/O GPA NGPA					
8	CH4275	Polymer Produ	er Products Manufacturing Technologies E G		GPA		
Hours	s/Week	Credita	Pronoguisitos / Concensisitos	Evalu	ation %		
Lecture	Lab/Tutes	Creatis	Frerequisites / Corequisites	CA	WE		
2	2	3.0	CH4235, CH4410	40	60		
Learning Outcomes							
After comp	leting this mo	dule, students sho	uld be able to,				
•	LO1: Identify	w the components	in an industrial rubber product to sa	tisfy service 1	requirements.		
•	LO2: Apply 1	knowledge gain o	n polymer technology to optimize th	ne manufactu	re of polymer		
	products.						
•	LO3: Unders	stand the manufac	turing technologies used in polymer	industry.			
•	LO4: Assess	the properties of p	polymer products and to demonstrat	e testing proc	edures.		
•	LO5: Recom	mend recycling te	chnologies to minimize pollution du	e to polymer	waste.		
•	LO6: Apply t	he knowledge to i	naintain the required quality of pro-	ducts.			
Syllabus O	outline						
Features a	nd assemblies	s of commodity a	nd engineering rubber products				
(tyres, hose	s and tubing, b	pelts, sheaths, foot	wear, bearings, mounts, gaskets and	seals, floorin	g and roofing		
products, e	tc.).						
Additives	used in polym	er products man	ufacturing				
Importance	, functions, a	nd limitations of,	fillers, vulcanizing systems, proce	essing aids, e	extenders and		
diluents, pr	otective agent	s, dyes and pigme	nts and speciality additives.				
Manufactu	iring technolo	ogies used in pne	umatic and solid tyres				
Manufactu	iring technolo	ogies of gloves, fo	am and cast products				
Fibre man	ufacturing te	chnologies					
Manufactu	re of extrusio	on-based product	ts and moulded				
Other Mai	nufacturing to	echnologies					
Thermofor	ming and vacu	um forming.					
Manufactur	ring technolog	ies of polymer co	mposites.				
Recycling	and upcycling	g technologies.					
Quality as	surance aspec	cts in polymer pr	oducts manufacturing				
Product te	sting and Cha	aracterization					
Physical, cl	hemical, therm	nal, electrical solu	tion, and weathering properties				

8 Hours/N Lecture 2 Learning Out After complete • L aa • L ee • L	CH4742 Week Lab/Tutes 2 utcomes ting this moo	Polymer Credits 3.0	Products and Tool Design Prerequisites / Corequisites	E E Evalu	NGPA GPA						
8 Hours/V Lecture I 2 Learning Ou After complet • L a • L e t • L p	CH4742 Week Lab/Tutes 2 utcomes ting this more O1: Identific	Credits 3.0	Products and Tool Design Prerequisites / Corequisites	E Evalu	GPA						
Hours/V Lecture I 2 Learning Ou After complet • L au • L e • L p	Week Lab/Tutes 2 itcomes ting this mod. 01: Identify	Credits 3.0	Prerequisites / Corequisites	Evalu	ation %						
Lecture I 2 Image: Complete state sta	2 Itcomes ting this mod. 01: Identify	3.0	1 1	A A							
2 Learning Ou After complet • L e • L p	2 itcomes ting this mod	3.0		CA	WE						
Learning Ou After complex • L au • L ex • L p	ting this mo 01: Identify		CH4410	40	60						
After complet L a L e L e L p	01. <i>Identify</i>	Learning Outcomes									
 L L L P Syllabus Out Rubber elast Molecular red network struct superposition viscoelastic b Modes of def Failure Mode Fracture of Po Design of rul Important fac engineering ru Design of Pla Design of Pla Design approdesigning wit welded assem Design of Inj 	ind tools. LO2: Identify environments LO3: Descril broducts. LO4: Design LO5: Design LO6: Recogn roducts. time ticity and vi quirements cture, Strain a principle, behaviour, Eff formation a es, Fracture 1 olymers, Fat bber product tors conside rubber product conside rubber product astic product oaching met th plastics for holy. jection Mou	dule, students sho the important en failure mechanis a failure mechanis be assembly techn of simple engined simple injection n <i>ize</i> the software u scoelastic proper of rubber-like ela -induced crystalli Stress-relaxation fects of molecula nd Failure mech Modes, Fracture ' igue Curves for P cts red on designing of cts, basic calculat ts hods, general co or electrical prope lds	uld be able to, gineering principles applicable to de ms of polymer products used under iques required for designing and me ering polymer products. mould/die to manufacture polymer p used for design and fabrication of me station, Boltzmann superposition p and creep, Dynamic mechanic r structure on viscoelasticity. anics Toughness, Stress Concentrators (F olymers. of rubber products, Features and assion on designing of simple engineer posiderations for designing injecti- rties, design of plastic product s for	esign of polyr edifferent serv anufacturing of product. oulds for poly formation, ten rinciple, Time al behaviour Flaws), Crack semblies of co ring rubber pr on moulded r mechanical	ner products vice of polymer mer mer e-temperature and e-temperature , Models of Propagation, propagation, ommodity and oducts. plastic parts, assembly and						
Runner less M system and ve Design of ext General const operating poin Design of ext and non-circu Computer ai Computer Aid Simulation M	Moulding. I enting system trusion dies atructional fe nt, head pres truder dies fo alar solid pro- tided design ded Design A Moldflow® a	Design Checklist, m, Design of core atures of Split, th ssure and total vol or extrusion of hol ofiles. analysis and Fab ri plastic injection n	Design of feed system, Design of and cavity, Mould making Technic meaded, integer and plate dies, Die umetric flow rate from extruder-die low profiles; slit dies for flat film a rication of moulds cation of Moulds: Solidworks® mo- poulding simulation software. Com	Ejector Syst ues, Mould M and screw cl combination nd sheet extru uld tool design	em , Cooling Materials. haracteristics, ly ision, circular n, Autodesk® nanufacturing						

Semester	Code		Module Title	C/E/O	GPA / NGPA
8	CH4450	Ene	Energy Storage Systems		GPA
Hours/Week		Cuadita	Promoniaitor / Companiaitor	Evaluation %	
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE
2	2	3.0	CH1051, CH2631, CH1044	40	60
	A .		·	-	

Learning Outcomes

After completing this module, the student should be able to,

- LO1: Identify available energy storage technologies
- LO2: Assess the demand of energy storage for embedded generation
- LO3: *Apply* suitable energy storage technologies
- LO4: *Assess* the economic viability and conversion efficiencies of different energy storage technologies
- LO5: *Design* energy storage systems

Syllabus Outline

Introduction

Overview of energy storage concepts, Need of energy storage in renewable energy, Limitations and impacts of energy storage technologies.

Thermal energy storage

Sensible heat storage, Latent heat storage (phase change materials), Thermochemical energy storage (reversible reactions), Material selection, Application-specific constraints, Design of thermal energy storage for utility-scale renewables particularly for solar and geothermal power.

Electrochemical energy storage

Battery system structure, Elementary principle, Different types of batteries, Battery Management Systems, Aging of electrochemical batteries, Design of battery bank and economic evaluation for intermittent renewable energy systems.

Chemical energy storage

Concepts of power-to-gas and power-to-liquid, Efficiency and cost of fuel production, storage, transport, and electrical restitution, Comparison of different power-to-fuel pathways.

Mechanical energy storage

Concepts of pumped hydro, compressed air, flywheel.

Electrical energy storage

Concepts of energy storage in capacitors, ultracapacitors, and supercapacitors, Comparison of magnitude and quality of energy stored.

System integration of energy storage solutions with power generation units and grid management

Semester	Code		Module Title	C/E/O	GPA / NGPA		
8	CH4255	I	Renewable Energy		GPA		
Hours	s/Week	Credita	D ronoquigitos / Coroquigitos	Evalu	ation %		
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE		
2	2	3.0	CH1051, CH1044, CH1061	40	60		
Learning (Outcomes			•			
 After completing this module, the student should be able to, LO1: <i>Identify</i> renewable energy resources. LO2: <i>Describe</i> principles of renewable energy technologies. LO3: <i>Analyse</i> the applications of renewable energy technologies in domestic, industrial, and utility-scale. LO4: <i>Apply</i> modelling and simulation tools to analyse renewable energy technologies. LO5: <i>Evaluate</i> site-specific techno-economic-environmental viability of renewable energy technologies. 							
Syllabus O	outline	optimur rene wuor	e energy systems that meet speeme	energy denna	indo.		
Introduction Overview of Wind ener Wind resona application Hydel ener Hydro resona	on of renewable e gy urce identifica s. gy urce identifica	nergy concepts. ation and assessm	nent, Conversion technologies and	1 principles,	Wind power		
hydro energ Solar energ Solar resor principles, Biomass en	Hydro resource identification and assessment, Conversion technologies and principles, Pico/Micro/Mini hydro energy applications. Solar energy Solar resource identification and assessment, Solar PV/solar thermal conversion technologies and principles, Solar PV/solar thermal applications in different scales.						
Biomass re and princip Micropow	source identifi les, Biomass c er design and	cation and assess combustion/gasific optimization usi	ment (special focus to energy crops) cation/pyrolysis applications in diffe ng software tools), Conversion erent scales.	technologies		

Design and optimization based on site-specific technical potential, levelized cost of energy, and environmental impact.

Semester	Code		Module Title	C/E/O	GPA / NGPA				
8	CH4651	Cor	nbustion Technology	Е	GPA				
Hour	s/Week	Credite	Proposition / Conoquisitor	Evalu	ation %				
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE				
2	2	3.0	CH1051, CH 1044, CH2631, CH2015, CH4501, CH3055	40	60				
Learning	Learning Outcomes								
After comp	After completing this module, the student should be able to:								
•	LO1: Unders	tand the fundame	ntal concepts in combustion.						
•	 LO2: Determine the factors influencing the flame speed and the flame thickness of laminar 								
	premixed fla	mes.	0 1						
•	LO3 Use the	conserved scalar	formalism to understand and explain	n non-premix	ed				
	behaviour.		······································	P					
•	LO4: Estima	te the droplet evan	poration and burning rates.						
•	LO5: Use tur	bulent combustion	n concepts to characterize combusti	on regimes					
•	LO6: Apply f	undamental conce	ents in solid combustion to develop	simple model	s of the				
-	burning of a	carbon particle	pis in solid combustion to develop	simple model	is of the				
•	I O7: Apply 1	methods used to a	uantify the pollutant emissions from	combustion	systems				
Syllabus (utline	neurous used to q	dantify the political emissions from	Combustion	systems.				
Introduction	n to combustion	1							
Motivation t	o study combus	tion, definition of co	mbustion, combustion modes and flame	types					
Review of p	rerequisites								
Chemical the	ermodynamics a	nd equilibrium - Ma	ss, energy and atomic species conservat	tion; Multispec	ies equilibrium				
and calculati	ion method								
Chemical ki	netics - Principle	es of chemical kinet	ics (law of mass action and activation e	nergy); Hydrod	carbon reaction				
Characteristi	itant formation,	Multistep reactions	and explosions; Steady state and partia	l equilibrium a	pproximations;				
Application	s of chemical ki	inetics - limit react	ors						
Common ap	proximations in	combustion analysi	s (Static reactor. Perfectly stirred reactor	r. Plug flow rea	actor): Thermal				
explosions;	Autoignition			,	,,,				
Heat, mass a	and momentum	ransfer in combusti	on - molecular and convective fluxes: C	haracteristic no	on-dimensional				
numbers: Da	hmköhler, Lewi	s, Schmidt, Prandlt,	Peclet, Reynolds						
Pollutant er	nissions			F · · · ·					
Combustion	Emissions from	non promised com	pollutant; Quatrication of emissions	; Emissions r	rom premixed				
Laminar nr	emixed flames	non-preniixed com	bustion						
Laminar pre	mixed flames: c	oncepts and measure	ements: Characteristic time and space sc	ales, Zeldovich	n number: One-				
dimensional	conservation eq	uation and simplifie	d solutions; Effects of mixture composi-	tion, stretch and	d curvature				
Laminar no	n-premixed fla	mes							
Laminar diff	usion flames: co	oncept and measurer	nent methods; Characteristic time and sp	pace scales; Co	nserved scalars				
and mixture	fraction; One-di	mensional conserva	tion equations: co-flow and opposed flow	w; Limit case so	olutions; Effect				
Or mixture c	poration and b	urning							
Applications	involving liqui	ds combustion: Clo	used form analytical solutions to the si	mplified gover	ning equations				
applicable to	droplet evapora	ation and burning; Ir	fluence of droplet size and ambient con	ditions on drop	let evaporation				
and burning;	Droplet gasifica	ation rates and dropl	et lifetimes; One dimensional analysis of	f a simple, stead	ly flow, liquid-				
fuel combus	tor	_							
Turbulent f	lames:	1							
Characteristi	ic time and space	e scales; Regimes of	turbulent combustion; Measurement me	thods and resul	ts; Approaches				
to modelling	to turbulent comb	ustion; 1 urbuient pre	emixed name characteristics; Turbulent c	influsion flame	cnaracteristics;				
Burning of	solids:	iousuon meory							
Applications	involving solid	ls combustion; Fund	damental concepts in solids combustion	1: heterogenous	s reactions and				
simplificatio	ns; Burning of c	arbon: one-film mo	del, two-film model; particle burning tin	nes; Coal comb	oustion				

Semester	Code		Module Title	C/E/O	GPA / NGPA
8	CH4215	Environmenta	Environmental Engineering and Management		GPA
Hours	s/Week	Credita	Buonoguigitos / Conoguisitos	Evalu	ation %
Lecture	Lab/Tutes	Creatis	Frerequisites / Corequisites	CA	WE
2	2	3.0	CH3045	30	70
Learning (Outcomes				
Syllabus O	LO1: Identify LO2: Apply e LO3: Apply 1 LO4: Assess LO5: Design	and describe envery environmental accontent nathematical models environmental im pollution control	vironmental pollutants management ounting in project analysis. lels to simulate pollution control an pacts. equipment and processes.	t techniques. d treatment c	perations
Wastewate Treatment blanket (U Air Polluti Particulate Solid Wass Integrated a Hazardous	er Engineerin levels, physica ASB), membra ion Control: and gaseous p te Manageme solid waste mas s Waste Mana	g: l and chemical tre une bio reactors) a ollutants control e nt: nagement, collect gement and Eng	eatment operations, biological (Up nd advanced treatment processes. equipment and processes. tion, treatment, and disposal. fineering :	flow anaerob	ic sludge

Hazardous waste treatment and disposal. Environmental Impact Assessment:

Procedure and methods

Basics of Environmental Accounting:

Environmental valuation techniques and project analysis

Semester	Code		Module Title C/E/O GPA / NGPA					
8	CH4460	Sustaina	able Process Technology	Е	GPA			
Hour	s/Week	Credits	Proroquisites / Corequisites	Evalı	luation %			
Lecture	Lab/Tutes	creates	Trerequisites / Corequisites	CA	WE			
2	2	3.0	CH3045	30	70			
Learning Outcomes								
Lettice Lab Futures CH WE 2 2 3.0 CH3045 30 70 Learning Outcomes After completing this module, student should be able to: . . . 4 LO1: Describe the characteristics of sustainable process technologies. . LO2: Apply life cycle thinking for products and processes in the process industry. . LO3: Evaluate energy flows of process life cycle and interpret them for energy sustainability. . LO4: Select processes and technologies based on environmental sustainability. • LO5: Evaluate carbon footprint and water footprint of products and processes. . LO6: Analyze environmental impacts of products and processes life cycle stages. Syllabus Outline Introduction to Sustainable Process Technologies and Strategies to determine sustainability of processes Process and Technology Selection Life Cycle Thinking of Products and Processes: Product life cycle, process life cycle, and ways to define a life cycle scope of a given product or process (cradle-to-grave, cradle-to-grade, gate-to-gate scopes) Energy Sustainability Assessment OF Processes: Energy Sustainability Assessment GHG emission reductions or removal enhancements: Procedure and Techniques Water Footprint Assessment GHG emission reductions or								

Semester	Code	Мо	dule Title	C/E/O	GPA / NGPA							
8	CH4351	Up-stream Oil	and Gas Operations	Е	GPA							
Hou	rs/Week	Credita	Prerequisites /	Evalu	ation %							
Lecture	Lab/Tutes	Creatis	Credits		WE							
2	2	3.0	None	30	70							
Learning Outcomes												
 I I I I I I I I I Syllabus Out Introduction 	O1: <i>State</i> the scop ne petroleum rigs a O2: <i>Describe</i> con O3: <i>Understand</i> c O4: <i>Implement</i> tea atural gas. O5: <i>Analyse</i> prob O6: <i>Apply</i> modell O7: <i>Design</i> optim perations in crude	be of the upstream per and carriers. aposition, characteriz haracteristics of good chnologies for enhand lems in upstream pro- ing and simulation to al process units for o oil rigs and carriers.	troleum processing and des ation, and classification of d Reservoir Rock and Expl ced oil and gas production cessing operations and part ols to identify causes and s il and gas recovery process	crude petrole oration Tool and onsite pr tial / full shur solutions for ses and trans	erations in eum. s and Method rocessing tdowns. problems. port							
Upstream pet	roleum processing	and key operations i	n the petroleum rigs and ca	arriers.								
Composition	and Characteristic	s of crude petroleum										
Production of	f crude oil	s of crude performin										
Formation, E	xploration, Drillin	g and Recovery meth	ods of crude.									
Separation o	f produced fluids											
Two-phase ga	as oil separation, T	Three-phase oil water	gas separation.									
Treatment of	f produced fluids											
Emulsion trea	ttment and Dehyd	ation of crude oil, de	salting of crude oil, Crude	oil stabilizat	ion and							
Field process	sionage tanks and (nt of natural gas	roduced water treatment.									
Overview of	gas field processing	g. Sour gas treating	Gas dehydration. Separatic	on, and Fract	ionation of							
Natural Gas I	Liquids.	o, Bus usung,	2	,								
Cryogenics I	Processes and Gas	s Compressors in Ga	aseous fuel Processing									
HSE Manag	ement in crude oi	l rigs and carriers	_									

Semester	Code		Module Title C/E/O GPA NGP/								
8	CH4381	Petrole	eum Refining Operations	Е	GPA						
Hour	s/Week	Cuadita	Pronoguisitos / Conoguisitos	Evalu	ation %						
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE						
2	2	3.0	None	30	70						
Learning	Outcomes										
•	 LO1: <i>State</i> the scope of the downstream petroleum processing and describe key chemical processes in the petroleum refinery process. LO2: <i>Identify</i> functionalities of production processes and technologies in production of hydrocarbon fuels based on their applications. LO3: <i>Schedule</i> production routes & processes for the synthesis of petrochemicals and their derivatives. LO4: <i>Analyse</i> problems in petroleum processing operations and partial / full shutdowns. LO5: <i>Apply</i> modelling and simulation tools to identify causes and solutions for problems. LO6: <i>Dasian</i> optimal process units for production processes in petroleum refineries. 										
Syllabus C	Outline										
Introducti Character Application application Refinery H Polishing & Product H Utilities M Production Problems Modelling	on Subsurfac ization of Pet n based Petrolo s. Processing of (& Conditioning (andling & Sto (anagement ir n Facilities in in petroleu and simulatio	e Operations of C roleum eum Products Cha Dils and Gasses g Processes in liqu orage in Oil and C oil & Gas Proce m processing ope ons of major cher	Dil & Gas Production racterization – Automobile, Power hid fuel processing & Gaseous Fuel Gas Processing ess Facilities & HSE Management erations and partial / full shutdow mical processes in petroleum refir	generation, an Processing. t in Petroleu ns neries	nd other m						
Semester	Code	Module Title		C/E/O	GPA / NGPA						
---	--	----------------------	---------------------------------------	--------------	---------------	--	--	--	--	--	--
8	CH4294	Bioengineering		Е	GPA						
Hours/Week		Cruedite	D	Evaluation %							
Lecture	Lab/Tutes	Creuits	r rerequisites / Corequisites	CA	WE						
2	2	3.0	None	40	60						
Learning Outcomes											
Learning (After comp After comp Syllabus O Upstream Introductio microorgar Cell cultive Microbial, selection an formation Microbial Growth cy estimation Enzyme ki Introductio reactor type Sterilizatio Bioreactor Modes of o control, ma stratege a	After completing this module, the student should be able to: • LO1: Identify, recognize, and appreciate engineering contributions in bioengineering applications • LO2: Quantify kinetics of microbial growth and enzyme action • LO3: Use tools of bioprocess engineering • LO4: Design key aspects of an industrial-scale fermenter • LO5: Evaluate performances of a bioreactor • LO6: Troubleshoot operational problems in bioprocessing Syllabus Outline Upstream processing Introduction to upstream processing, isolation, preservation, and improvement to industrially important microorganism Cell cultivation Microbial, animal and plant cell cultivation and growth requirements, inoculation and culture media, selection and design of media for specific function, quantitative aspects of microbial growth and product formation Microbial growth kinetics Growth cycle for batch cultivation, growth models for batch, plug flow and continuous bioreactors. estimation of mono-kinetic parameters, productivity optimization and cell recycling Enzyme kinetics Introduction to enzyme reactions, Mechaelis–Menton approach and Briggs-Haldane approach, enzyme reactor types and enzyme inhibition Sterilization Sterilization										
Recovery and purification of bio-products											
Process sel	ection and des	ıgn									
Need chall	enges and ev	olution: cell source	es and culturing, scaffolds, the way	forward							
Tiecu, chan	enges, and eve	Judon, con sourc	es and culturing, scartolus, life way	101 watu							

Semester	Code		Module Title	C/E/O	GPA / NGPA
8	CH4691	Food Process Engineering		Е	GPA
Hours/Week		Cruedite	Promo antigitas / Como antigitas	Evaluation %	
		Cashin	Duono guilaito a / Companyiaitoa	Livara	
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
Lecture 2	Lab/Tutes 2	Credits 3.0	Prerequisites / Corequisites None	CA 40	WE 60

Learning Outcomes

After completing this module, the student should be able to,

- LO1: *Explain* the mechanisms of spoilage and deterioration of foods and raw materials.
- LO2: *Describe* the role and function of packaging materials in food preservation.
- LO3: *Relate* food quality (texture, sensory, structure, etc.) to the chemical composition, processing, and storage conditions.
- LO4: *Develop* simple understanding on nutrition and dietetics and explain the effects of processing steps on nutritional quality.
- LO5: *Evaluate* common food processing techniques and preservation methods for safe and quality food production.
- LO6: Calculate and model different thermal technologies.

Syllabus Outline

Introduction to Food Processing

Food is Life; Evolution of Food Industry from Make-Service-Care; Properties of Food Material (mechanical, thermal, electrical properties, structure, water activity, phase transition phenomena in food). **Impact of food processing on nutritional quality**

Nutrient value of different types of food; Role of nutrients; Food energy; Food processing and effect of unit operations on nutritional quality.

Food Engineering Operations

Preparative Operations; Structuring Processes (crystallization, glass transition, extrusion, emulsification, fat replacement); Separation Processes (freeze drying, freeze concentration, drying, membrane separation).

Food Preservation and Shelf-life I

Farm to mouth interactions, stakeholders; Mechanisms of food spoilage (microbial, enzymatic, chemical, physical); Food Preservation Processes; Minimally processed food (need, techniques, hurdle technology). **Food Preservation and Shelf-life II**

Thermal Processing of Food [Thermal process parameters; Kinetics of thermal inactivation of MOs and enzymes; Lethality; Optimizing thermal processes for safe and quality foods; Current and emerging thermal technologies and equipment]; Low Temperature Operations [Chilling and Freezing; Factors affecting rate of freezing; Freezing time calculations; Properties of frozen food; Equipment and Methods]; Nonthermal preservation processes [Ionizing irradiation; High hydrostatic pressure preservation; Pulsed electric fields, Ultraviolet light and pulsed intense lights, Ultrasound treatment, Ozonation, Cold Plasma]; Chemical Preservation [Chemical control of spoilage (kinetics and antimicrobial agents); Antioxidants]; Biological Preservation [Fermentation and enzymes in food industry; Biopreservation].

Food Packaging

Factors governing the type of packaging and kinetics of packaging; Packaging materials; Atmosphere in the Packaging; Smart packaging.

What's Cooking-Trends in Food Engineering

Food mega trends; Functional foods; Food enrichment with natural ingredients; Probiotics and prebiotics; Nanofoods and Nanobiotechnology in food processing; 'Enginomics'.