MA1023-Mathematical Methods-S2-2014-Mid-Make up	Field:
Name:	Index Number:

Q1. Each year, rating are compiled concerning the performance of new cars during the first 90 days of use. The cars have been catergorized according to whether a car needs warrantly related repair or not (yes or no) and the country in which the company manufacturing a car is either Japan or Malaysia. Based on data collected for the last two years, the probability that a new car needs a warrantly repair is 0.04 . The probability that the car was manufactutred by Malaysia is 0.60 . The probability that a new car needs a warrantly repair and was manufactured in Malaysia is 0.025 .
a) Construct a 2-way frequency table for the two random variables.
b) Using the frequency table what is the probability that a new car selected at random need a warrantly related repai given that it is manufactured in Japan.
c) Give an example for a joint event in the frequency table.
d) Find the probability of the joint event you defined in (c).

MA1023-Mathematical Methods-S2-2014-Mid-Make up	Field:
Name:	Index Number:

Q2:
a) The random variable Y is defined such that $Y=0.6 \mathrm{X}_{1}+0.4 \mathrm{X}_{2}$ where $X_{1}=$ weight of boxes manufactured and $X_{2}=$ volume of the same boxes. If
$\mathrm{E}\left(\mathrm{X}_{1}\right)=5, \mathrm{E}\left(\mathrm{X}_{1}^{2}\right)=34, \mathrm{E}\left(\mathrm{X}_{2}\right)=3, \mathrm{E}\left(\mathrm{X}_{2}^{2}\right)=18$ and $\operatorname{Cov}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=0.8$ find the standard deviation of Y .
b) If the pdf of random variable is such that $f(x)=\left\{\begin{array}{c}x+1 \text { for }-1 \leq x<0 \\ 1-x \text { for } 0<x<1 \\ 0 \text { otherwise }\end{array}\right.$, find the cumulative distribution function, $\mathrm{F}_{\mathrm{X}}(x)$.

MA1023-Mathematical Methods-S2-2014-Mid-Make up	Field:
Name:	Index Number:

Q3. Solve the differential equation $\frac{d y}{d x}-\frac{y}{x}=1-e^{-x}, y(1)=0$ representing $y=y(x)$ as an integral.

MA1023-Mathematical Methods-S2-2014-Mid-Make up	Field:
Name:	Index Number:

Q4. Let $y(x)$ be the solution to the differential equation in Q3. Find $\lim _{x \rightarrow \infty} \frac{y(x)}{x}$.

MA1023-Mathematical Methods-S2-2014-Mid-Make up	Field:
Name:	Index Number:

Q5. In the calculation of the volume of a cube of nominal size $10^{\prime \prime}$, the uncertainty in the measurement of each side is 12%. The uncertainty in the measurement of the volume would be

MA1023-Mathematical Methods-S2-2014-Mid-Make up	Field:
Name:	Index Number:

Q6. The root of the equation $f(x)=0$ is found by using secant method. Given one of the initial estimates is $x_{0}=3$ and $f(3)=5$, and the angle the secant makes with the function $f(x)$ is 57°, the next estimate of the root, x_{1}, is

