MA1023-Mathematical Methods-S2-2014-Mid	Field:
Name:	Index Number:

Q1. A mechanical engineer is creating a design for a new engine. He judges that there will be a $50 \%, 30 \%$ and 20% chance that it will have high eneregy (H), medium energy (M) and low energy (L) consumption. Generally 30% of H engines, $50 \% \mathrm{M}$ engines and 60% of L engines have been approved, while the rest is being disapproved by the management.
a) What are the two random variables above?
b) Construct a 2-way frequency table.

Using the frequency table only, find the probabilities of:
c) The design will result in an approved engine.
d) A randomly selected engine will be a M engine and approved one.
e) A randomly selected engine will be a L engine provided that it is a disapproved one.

MA1023-Mathematical Methods-S2-2014-Mid	Field:
Name:	Index Number:

Q2. A random variable X has a cumulative distribution function given by $F(x)$ such that

$$
F(x)=\left\{\begin{array}{lr}
0 & , x<0 \\
m x^{n} & , 0 \leq x \leq 2 . \\
1 & , x>2
\end{array}\right.
$$

If $E(X)=2 / 3$, obtain two equations to find m and n (Not necessary to solve).

MA1023-Mathematical Methods-S2-2014-Mid	Field:
Name:	Index Number:

Q3. Solve the differential equation $\frac{d y}{d x}-3 x^{2} y=1, y(0)=0$ representing $y=y(x)$ as an integral.

MA1023-Mathematical Methods-S2-2014-Mid	Field:
Name:	Index Number:

Q4. Let $y(x)$ be the solution to the differential equation in Q3. Show that $\lim _{x \rightarrow \infty} \frac{y(x)}{e^{x^{3}}}$ is existing as a converging improper integral.

MA1023-Mathematical Methods-S2-2014-Mid	Field:
Name:	Index Number:

Q5. Two numbers A and B are approximated as C and D, respectively. Show that

$$
\begin{gathered}
\operatorname{Rel}(C \times D) \approx \operatorname{Rel}(C)+\operatorname{Rel}(D) \\
\operatorname{Rel}\left(\frac{C}{D}\right) \approx \operatorname{Rel}(C)-\operatorname{Rel}(D)
\end{gathered}
$$

If $C=2.34, D=5.23$ and rounding method use for the approximation, find maximum relative error of $C \times D$ and $\frac{C}{D}$.

MA1023-Mathematical Methods-S2-2014-Mid	Field:
Name:	Index Number:

Q6. Given $f(x)=-12 x^{5}-6 x^{3}+10$, apply secant root location technique taking initial guesses as 0.8 and 1 to find a real root of $f(x)$. Perform iterations until absolute relative error goes below 1%.

